Toward On-Chip JIT Synthesis on Xilinx
VirtexII-Pro FPGAs

Etienne Bergeron, Marc Feeley, Jean Pierre David
Université de Montréal, Ecole Polytechnique de Montréal
{bergeret,feeley} @iro.umontreal.ca, jpdavid@polymtl.ca

Abstract—Xilinx VirtexII Pro FPGAs support dynamic recon-
figuration. To benefit from this functionality, Xilinx proposes a
modular and differential development flow, which consists in pre-
compiling all possible configurations and switching from one to
another in real time. The pre-compilation process is too slow
and static. Xilinx also supplies JBits, but this tool does not
support the VirtexII Pro FPGA and later devices. We aim to
dynamically produce digital circuits. Unfortunately, since Xilinx
does not entirely document the format of the FPGA bitstreams,
it is in principle impossible to produce bitstreams without using
their tools. This paper presents the methodology we have used
to determine the Xilinx bitstream format in order to quickly
produce valid configurations on the fly using only our tools.
Our synthesis approach translates a simple expression language
into a dataflow graph of predefined tiles which are placed
and interconnected using the bitstream format information we
gathered.

I. INTRODUCTION

A FPGA is a configurable circuit. Its behavior can be tai-
lored to a specific application through the process of configura-
tion, which is performed when the FPGA is initially powered
on. Some FPGAs, such as the VirtexIl Pro family, also allow
partial reconfiguration at runtime [Xil05b], [XilO5a].

A configuration is a set of activated programming points.
In the case of Xilinx FPGAs, these are either configuration
points (LUT, registers, multiplexers) or programmable inter-
connect points (pips). The configuration completely defines the
circuit’s behavior at the lowest level of abstraction possible for
a given FPGA.

A bitstream is a vector of bits encoding a configuration. It
is downloaded into the FPGA during the configuration process
and it sets up the configuration registers according to the
configuration. Xilinx does not document the mapping between
a configuration and its associated bitstream.

II. RELATED WORK

Bitgen, a Xilinx tool, takes a configuration and produces a
bitstream. It is the only tool that can produce bitstreams for
the VirtexII Pro FPGA series. JBits [GLS99], another Xilinx
tool, can produce bitstreams programmatically from Java, but
it does not support VirtexIl and later FPGA families. At
this time, reconfigurable computing projects on Xilinx FPGAs
must use the Xilinx development flow [Xil04] due to the lack
of alternatives. The creation of custom tools is not feasible
because the relation between the configuration points and the
position and encoding of the programming bits in the bitstream
is not documented.

F5

B

1| F

FXOR|

@ FPGA Editor

Bitstream
Generator

1] =
o] 3
1] 2
o] &

RICI1.SLICE0.FXMUX=F5
RIC1.SLICEO.FFX =FF

Configuration

Fig. 1. Mapping Configuration and Position

PARBIT [HLO1] is a tool which extracts and reallocates
Virtex partial bitstreams. It can produce a partial bitstream
from a specified rectangular area in the CLB region of a
full bitstream. It does not support the VirtexIl (Pro) family.
BITPOS (BITstream POSitioner) [KJdITRO5] is able to real-
locate BRAMs and multipliers and, unlike PARBIT, supports
the VirtexIl. pBITPOS [Kra06] is a similar tool operating
in two modes: simple or merge. In simple mode, it can
manipulate a full-height core (spanning entire FPGA frames).
In merge mode, partial cores can be merged. FPGA equations
to manipulate cores are well documented in [Kra06].

Configurable
Frame

Dynamic
Module

\

Co—~co~oc~—~~—09
Co—~co~oc~—~~9

Fig. 2. Manipulation or cores (translation of two opaque cores)

For these tools, a core is a configuration (vector of bits) of a
rectangular region with a predefined and compatible interface
(usually interconnected with bus macros). The main limitation
is that they manipulate opaque cores (black boxes) without



any regard to their content. They can extract cores from a
full bitstream, translate and configure them. However, they
are not able to merge overlapping cores or detect possible
conflicts. This limitation comes from the fact that Xilinx does
not document the content of the configuration frames and
limits tools in their abilities to manipulate cores.

Reconfigurable Computing (RC) makes use of pro-
grammable logic (usually FPGA) and microprocessors to
accelerate computations. RC architectures are of interest be-
cause they have been shown to speed up a wide range of
applications [GKO2]. Speed ups are obtained by dynamically
reconfiguring the architecture to better fit the needs of the
application. The RTR-JVM [GS05] (Runtime Reconfigurable
Java Virtual Machine) is a platform that makes use of recon-
figurable computing. The goal of this project is to automate
reconfigurable computing for Java applications. The system
uses a profiler to detect a set of features (contiguous segments
of the algorithm). Selected features are translated to VHDL
and synthesized by using standard Xilinx tools to produce a
library of synthesized features. The virtual machine is able to
dynamically load and unload features depending on the needs
of the application. An important limitation is that the system
is unable to produce new features on-the-fly.

Just-in-time compilation (JIT), also known as dynamic
translation, converts code, at runtime, from a portable format
(bytecode) to machine code. JIT synthesis is the concept of
dynamically producing FPGA configurations from a core (net
list) or higher level code. Currently, no system is able to
perform this task. We believe it is possible by providing more
detailed cores to a platform such as RTR-JVM. However,
building such a system requires more information on the
bitstream format to annotate the detailed cores. An annotation
expresses an attribute of a core useful for deciding how and
when to instantiate it (such as position of IO ports, resources,
latency, ...)

This paper introduces a technique to determine the mapping
between a configuration and its associated bitstream. We have
used the proposed technique to find the mapping for the
XC2VP2 FPGA (VirtexII Pro series). We demonstrate how this
information is used to dynamically generate a configuration
and its associated bitstream extremely fast using only our
software running on the PowerPC embedded in the FPGA.

III. LOGARITHMIC REVERSE MAPPING

Xilinx offers a tool (XDL) to transform a configuration into
a textual yet proprietary format (NCD). This file can then be
compiled using Bitgen to produce a bitstream. The problem we
address consists in finding the positions of the configuration
bits related to a given programming point, for all programming
points. A linear analysis (one programming point per compi-
lation) is not viable since the bitstream generation time is too
long (minutes) and the programming points are too numerous
(millions).

The idea behind logarithmic reverse mapping is to simulta-
neously resolve all programmable points by solving constraint
sets. This way, the algorithm is asymptotically faster than other
naive techniques and can be executed in a reasonable time.

Analysis

Configurations Bitstreams
P, P, P,P, P, P, P, B,B,B,B;B, B.B,B,B,B,
C X X|X|X|Y YY 0j0j00j0(0(1 111
C,|x x|Y[Y|Xx X Y —— = |oj1joof1/1j0 011
CyIx Y|X|¥|x ¥ x XY Jolo|1 1]o|1|1 0 0 0
() 010(2)
011 (3) @
<bbb>=1i <010>=2 <011>=3
P = B, P, = B,| |P, = B;
Solution
P 0[112[314[516
B [0[1]2]3[4[5[6[7[8[9]
Fig. 3. Example of the Logarithmic Reverse Mapping on a 10-bit bitstream

The approach consists in producing a series of configu-
rations C ...C, where programming point settings evolve
differently from each other. By observing the evolution of
each bit in the bitstream, it is possible to resolve the mapping.
Configuration points can take the values X or Y which are
mapped to values 0 and 1 in the algorithm. For a set of
programming points ({P;}), we encode the value i in the
sequence of configurations as illustrated in Figure 3. The
matching bits B; in the bitstream will then also be the binary
encoding of i. Thus, bit sequence B; encodes value i, its
matching programming point.

The situation is more complex in reality because program-
ming points can have more than two values, some constraints
exist between programming points, some B, are inverted
or constant, etc. On FPGAs, different kinds of constraints
can be found. There are dependency constraints when a
programmable point can only be activated if one of its
predecessors is activated. There are configuration constraints
when programmable points depend on some configuration
(voltage, I/O protocol, type, ...). There are conflict constraints
when programmable points cannot be activated simultaneously
because they share some resources. And finally, there are
sharing constraints when two programmable points must have
a related value (usually the same one) because their encoding
share some bitstream bits. We illustrate these constraints in
Figure 4.

We have been able to overcome these difficulties and to
reverse the mapping in O(log|C|) time where |C| is the
number of programming points. This takes just a few days
on a single workstation or a few hours on a cluster.

IV. BITSTREAM DECOMPILER

To validate our approach, we have implemented a bitstream
decompiler which performs the inverse operation of the Bitgen
tool. This tool converts a bitstream into an XDL file. XDL
files can be translated to NCD (Native Format Description)
format and viewed in the FPGA Editor tool. As an experiment,
we decompiled a 32-bit full-adder and observed using FPGA
Editor that the original and decompiled designs were identical
(Figure 5).



SLICEL

Dependence

ClLuT
W RAM

Configuration<
M DUAL

ClLuT
M RAM

Conflict
M DUAL

SLICEOQ

Fig. 4. 5 kind of constraints limiting bitstream generation

Fig. 5. Decompilation of a 32-bit full-adder on a XC2VP2 FPGA

This tool is useful for debugging dynamic designs. It is
possible to suspend the FPGA, readback a configuration and
import it in FPGA Editor. Readback can be done through JTAG
or ICAP (Internal Configuration Access Port). This tool greatly
simplifies the debugging of dynamic applications.

V. ANNOTATED TILES

Typically, the granularity of the components handled by
RTR systems is the module (core). One of the major limi-
tations is that modules cannot overlap. Moreover, intercon-
nection (via macro bus) limits the width of the communication
between modules. This granularity is not fine enough to realize
a JIT that instead needs basic instructions (such as arithmetic
operators, binary operators, multiplexers, ...). To solve this
problem, we produced annotated tiles. The idea is to provide
a set of fine-grained tiles annotated with information necessary
to handle them correctly.

Figure 6 shows a pipeline built by merging basic tiles. To
be able to produce this kind of module, tiles must be able
to overlap and cannot pass through bus macros which is the
design flow proposed by Xilinx [Xil04].

With information obtained by the technique of reverse
mapping, we produce tiles (according to our specific needs)
without using the Xilinx tools. Instead of representing a tile
as a rectangular set of bits, our tiles contain a mask to specify
which bits are really used. This mask can be used to merge
overlapping tiles.

Constant Operato:

Tiles: i I-u =
;\ f Routing

Abstract pins

Pipeline:

Module

Fig. 6. Construction of a pipeline based on annotated tiles for expression 2+
242

With the aim of producing an instruction set for a prototype
JIT, we determined some common properties of all tiles. The
geometry of our tiles is constrained by the architecture of the
FPGA. A CLB contains two columns of two SLICEs and each
SLICE contains two LUTs producing two bits. As handling of
the configurations by the JIT is made with 32-bit words and
CLB configuration bits in a frame are 3 bytes high, we chose
to produce tiles of 4 CLBs (Figure 7). Thus, we implement
16-bit wide operators. Moreover, to allow the use of the carry
chain it is necessary to use slices in columns. As we observe
in Figure 7, it is possible to put two operators in the same
CLB, and they share the same switch matrix.

16 bit routing

\

16 bit operator

— F7 Slice (2 x LUTs / Slice)

%e JE —— LUT (2 x Slice / Column)

Carry chain

Switch matrix

J RN .
e

Major frame

S LI-
\

 —
22 minor frames

x 3 bytes / frame
X 4CLB

=264 bytes / operator

2 x operators / 4 x CLB

Fig. 7. Tile properties based on FPGA geometry

This organization makes the translation of tiles easy. Bits
can be addressed using a relative address (represented by
<BA, MJA, MNA, OFFSET, BIT>). The block addresses
(BA) is zero for all CLBs. The major frame (MJA) is incre-
mented for each column, from left to right. A column contains
22 minor frames (MNA). OFFSET represents the word of the
frame and BIT specifies a bit in the word. Translating the
configuration bits of a tile on the x-axis consists in adding
a constant to the major frame (MJA), and translating on the
y-axis consists in adding a constant to the offset (OFFSET).
As ICAP uses relative addresses, we do not need to convert
addresses to their absolute form. An operator tile needs 264



bytes to represent the needed configuration and the same for
its corresponding mask.

Abstract pins are used to represent a set of interconnexion
points. For example, the LUT outputs of a column form a
16 bit value named L-O (left output) or R-O (right output)
depending of the column parity (even = left, odd = right).
In the same manner, the LUT inputs can be named L-I1, L-
12, L-13, L-14, R-11, R-12, R-I3, R-14 because the LUTs take
4 inputs. Tiles produced by our tool are annotated with the
abstract pins to specify their interface. Thus, a tile having a
L-O output pin is compatible with a tile having an L-O input
pin.

Tiles can be merged if and only if they do not use common
resources. As there are too many resources to keep track of
for tiles, we use abstract resources which represent a set of
real resources. This leads to a more compact representation
of resources without loss of generality. As an example, an
operator that uses a LUT will probably use all other LUTs
on the same column (16 LUTs). So, we produce the abstract
resources L-LUTS and R-LUTS to represent the bundle of
LUTs (left and right). This kind of abstraction makes sense
because almost all tiles are symmetric for all CLBs (and often
for all slices). This is also true for routing resources.

To minimize the number of tiles, we add the concept of
parameterizable tile. As an example, tile FLUT4 represents a
4-input function and is parameterizable with a vector of 16
bits. The vector is the LUT configuration. Bitwise operators
(AND, OR, XOR, NAND, ...) can all be implemented with
this tile by passing the appropriate vector. We keep the
mapping from the parameterizable vector to the configuration
vectors with the tile.

Routing is handled similarly to operators. A simple routing
tile is an identity operator. For example, a tile with input L-O
and output R-I1 is a routing tile. It is possible to implement
some functions as routing tiles (such as shifting by a constant).

VI. RESULTS

To go further toward our goal of on chip JIT synthesis, we
synthesized a complete system on chip (SoC) with the XPS
tool in the right half of a XC2VP30 FPGA on the ML310
board. The SoC is based on an embedded PowerPC processor,
which is connected to several peripherals, in particular the
ICAP. The design (processor and logic) run at 100 Mhz.
Through the ICAP, we are able to produce small circuits on the
fly in the left (initially empty) half of the FPGA (Figure 8).
The selection of programming points, the production of the
bitstream and the configuration are entirely done by the
program running in the embedded PowerPC. We validated the
circuits produced by using the READBACK function of the
ICAP interface. Expressions containing up to 10 operators or
constants take less than 200ms to synthesize and configure.

VII. CONCLUSION

The mapping between configuration points and bitstreams is
a vital information for dynamic synthesis. We have proposed a
logarithmic technique to determine this mapping in a realistic
time. By using this information, we are able to produce sets

B

N B N

k

JIT-Synthesis on a XC2VP4 of a simple expression

Fig. 8.

of annotated tiles that can be used as basic configurable
elements by other tools. The information obtained allowed
us to implement the very first working prototype of a circuit
implementing on chip JIT synthesis from a simple expression-
based language.

REFERENCES

[GKO02] Steven A. Guccione and Eric Keller. Gene Matching using JBits.
In Manfred Glesner, Peter Zipf, and Michel Renovell, editors,
Field-Programmable Logic and Applications, pages 1168—1171.
Springer-Verlag, Berlin, September 2002. Proceedings of the
12th International Workshop on Field-Programmable Logic and
Applications, FPL 2002. Lecture Notes in Computer Science
2438.

S. Guccione, D. Levi, and P. Sundararajan. JBits: A Java-
based interface for reconfigurable computing. Second Annual
Military and Aerospace Applications of Programmable Devices
and Technologies Conference (MAPLD), September 1999.
Brian Greskamp and Ron Sass. A virtual machine for merit-
based runtime reconfiguration. In FCCM ’05: Proceedings of the
13th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’05), pages 287-288, Washington,
DC, USA, 2005. IEEE Computer Society.

Edson L. Horta and John W. Lockwood. PARBIT: A Tool to
Transform Bitfiles to Implement Partial Reconfiguration of Field
Programmable Gate Arrays (FPGAs). Technical Report WUCS-
01-13, Washington University, July 2001.

Yana E. Krasteva, Ana B. Jimeno, Eduardo de la Torre, and
Teresa Riesgo. Straight Method for Reallocation of Complex
Cores by Dynamic Reconfiguration in Virtex II FPGAs. In RSP
’05: Proceedings of the 16th IEEE International Workshop on
Rapid System Prototyping (RSP’05), pages 77-83, Washington,
DC, USA, 2005. IEEE Computer Society.

Krasteva. Virtex II FPGA Bitstream Manipulation: Application
To Reconfiguration Control Systems. Field Programmable Logic
and Applications, August 2006.

Xilinx. Two Flows for Partial Reconfiguration: Module Based
or Difference Based. Technical Report XAPP290, Xilinx,
September 2004.

Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA User Guide.
Technical Report UG012, Xilinx, March 2005.

Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet. Technical Report DS083, Xilinx, June
2005.

[GLS99]

[GSO05]

[HLO1]

[KJdITROS]

[Kra06]

[Xil04]

[Xil05a]

[Xil05b]



