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—— Abstract
Dynamically typed programming languages such as JavaScript and Python defer type checking

to run time. In order to maximize performance, dynamic language VM implementations must
attempt to eliminate redundant dynamic type checks. However, type inference analyses are often
costly and involve tradeoffs between compilation time and resulting precision. This has lead to
the creation of increasingly complex multi-tiered VM architectures.

This paper introduces lazy basic block versioning, a simple JIT compilation technique which
effectively removes redundant type checks from critical code paths. This novel approach lazily
generates type-specialized versions of basic blocks on-the-fly while propagating context-dependent
type information. This does not require the use of costly program analyses, is not restricted by
the precision limitations of traditional type analyses and avoids the implementation complexity
of speculative optimization techniques.

We have implemented intraprocedural lazy basic block versioning in a JavaScript JIT compiler.
This approach is compared with a classical flow-based type analysis. Lazy basic block versioning
performs as well or better on all benchmarks. On average, 71% of type tests are eliminated,
yielding speedups of up to 50%. We also show that our implementation generates more efficient
machine code than TraceMonkey, a tracing JIT compiler for JavaScript, on several benchmarks.
The combination of implementation simplicity, low algorithmic complexity and good run time
performance makes basic block versioning attractive for baseline JIT compilers.
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1 Introduction

A central feature of dynamic programming languages is that they defer type checking to run
time. In order to maximize performance, efficient implementations of dynamic languages
seek to type-specialize code so as to eliminate dynamic type checks when possible. Doing so
requires proving that these type checks are unnecessary and generating type-specialized code.

Traditionally, the main approach for eliminating type checks has been to use type inference
analyses. This is problematic for modern dynamic languages such as JavaScript and Python
for three main reasons. The first is that these languages are generally poorly amenable to
whole-program type analyses. Constructs such as eval and dynamic loading of modules
can destroy previously valid type information. The second is that these analyses can be
expensive in terms of computation time and memory usage, making them unsuitable for JIT
compilers, particularly baseline compilers. To reduce analysis cost, it is often necessary to
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sacrifice precision. A last issue is that some type checks simply cannot be eliminated through
analysis alone, without code transformations.

Because dynamic programming languages are generally poorly amenable to type inference,
and whole-program analyses are often too expensive for JIT compilation purposes, state of
the art JavaScript VMs such as SpiderMonkey, V8 and JavaScriptCore rely on increasingly
complex multi-tiered architectures integrating interpreters and multiple JIT compilers with
different optimization capabilities (baseline compilers to aggressively optimizing compilers).
At the highest optimization levels, modern JIT compilers typically make use of type feedback,
type inference analysis and also speculative optimization and deoptimization [16] with
On-Stack Replacement (OSR).

We introduce a simple approach to JIT compilation that generates efficient type-specialized
code without the use of costly type inference analyses or type profiling. The approach, which
we call lazy basic block versioning, lazily clones and specializes basic blocks on-the-fly in a
way that allows the compiler to accumulate type information while machine code is generated,
without a separate type analysis pass. The accumulated information allows the removal of
redundant type tests, particularly in performance-critical paths.

Lazy basic block versioning lets the execution of the program itself drive the generation
of type-specialized code, and is able to avoid some of the precision limitations of traditional,
conservative type analyses as well as avoiding the implementation complexity of speculative
optimization techniques.

This paper relates our experience implementing lazy basic block versioning and reports
on its effectiveness as a code generation technique. The rest of the paper is organized as
follows. Section 2 explains the basic block versioning approach, comparing it with the
related approaches of static type analysis and trace compilation. Section 3 describes an
implementation within Higgs, an experimental JIT compiler for JavaScript. Section 4
presents an evaluation of the performance of this implementation. Related work is presented
in Section 5.

2 Basic Block Versioning

In the basic block versioning approach, the code generator maintains a typing context (or
type map) which indicates what is known of the type of each live local variable at the current
program point. All local variables start out with the unknown type at function entry points.
While generating code, the code generator updates the typing context by inferring the result
type of data operations it encounters. Conditional branch instructions corresponding to type
tests create two new typing contexts for outgoing branch edges. In each context, a type
is assigned to the variable being tested (either the type tested or unknown). When a type
test branch instruction is encountered and the type of the argument is known, the branch
direction can be determined at code generation time and the type test eliminated.

The compiler may generate code for multiple instances of a given basic block; one version
for each typing context encountered on a branch to that basic block. This allows specializing
the basic block and its successors by taking the types of live variables into account. While
basic block versioning works at the level of individual basic blocks, the propagation of typing
contexts to successor blocks allows type-specializing entire control flow graphs.

An important difference between this approach and traditional type analyses is that basic
block versioning does not compute a fixed point on types to be inferred. Variables which
may have multiple different types at the same program point are handled more precisely
with basic block versioning due to the duplication of code. In a traditional type analysis,
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the union of several possible types would be assigned to such variables, causing the analysis
to be conservative. With basic block versioning, distinct basic block versions, and thus
distinct code paths, will be created for each type previously encountered, allowing a precise
context-dependent tracking of types.

With basic block versioning, loops in the control flow graph need not be handled specially.

A first version of the loop header is generated for a typing context Cy. At the point(s) where
control flow branches back to the loop header, a new version of the loop may be generated
if the typing context Cjy is different from C;. Given that the number of possible contexts
is finite, a fixed point is eventually reached, that is, the typing context at branches to the
loop header will eventually match one of Cy, Cs, ..., Cy. The number of versions actually
generated is expected to be low because the type of most variables remains stable for the
duration of a function.

There is a risk of a combinatorial explosion when multiple versions of basic blocks
are created eagerly. Consider the simple statement x=a+b+c+d. If the types of a, b, ¢
and d are unknown, and those variables are live after the assignment, and there are two
possible numerical types (int and float), there could be up to 16 versions of the basic block
containing the assignment to x, one version for each set of type assignments to the variables
being summed. In general, if basic block versioning is performed in an eager fashion and
there are t possible types of values and a function has v variables, then there can be up
to t¥ versions of some basic blocks in that function. However, the logic of a program puts
constraints on possible type combinations. In practice, not all the combinations of types are
observed during an execution of a program.

It is often the case that variables are monomorphic in type (i.e. they always contain the
same type of value). We can take advantage of this by lazily creating new block versions
on demand. Versions for a particular context are only generated when that context is
encountered during execution. Lazy basic block versioning doesn’t completely eliminate the
possibility of a combinatorial explosion in pathological cases, but this can be prevented by
placing a hard limit on the number of versions generated for any given block. Some increase
in code size is to be expected, but no more than a constant factor. Mueller and Whalley
have shown [24] that specializing code through replication, while increasing the static size of
machine code, can reduce the dynamic count of executed instructions and result in better
cache usage.

Traditional type analyses often cannot infer a type for a variable, either because there is
insufficient semantic information in the source program, or because the analysis is limited
in its capabilities. For example, with an intraprocedural type analysis of JavaScript, no
type information is known about function parameters. Without transforming the program,
many variable types cannot be recovered by analysis alone. Moreover, the unknown type
may propagate through primitive operations and effectively poison the results of such type
analyses.

As will be demonstrated in Section 4, a key advantage of basic block versioning over
program analyses lies in its ability to recover unknown types. The versioning approach is
able to exploit type tests that are implicitly part of the language semantics to gain type
information, and then generate new block versions where the additional type information
remains known. Basic block versioning automatically unrolls some of the first iterations of
loops in such a way that type tests are hoisted out of loop bodies. For example, if variables
of unknown type are used unconditionally in a loop, their type will be tested only in the
first iteration of the loop. The type information gained will allow further iterations to avoid
redundant type tests.
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Lazy basic block versioning bears some similarity to trace compilation [5] in the use of
code duplication and type specialization to eliminate type tests [13]. Trace compilation
typically relies on an interpreter to detect hot loops and record traces. It is also most
effective on loop-heavy code. In contrast, lazy basic block versioning can handle any code
structure just as effectively. It avoids the dual language implementation (interpreter and
trace compiler) and requires no special infrastructure for profiling or recording traces.

The relative simplicity of tracking typing contexts and previously generated basic block
versions means that the compiler avoids algorithms of high computational complexity. With
a hard limit on the number of block versions, code generation time and code size scale
linearly with the size of the input program. Lazy basic block versioning requires no external
optimization or analysis passes to generate type-specialized code. This makes the approach
interesting for use in baseline JIT compilers.

3 Implementation in Higgs

We have implemented lazy basic block versioning inside a JavaScript virtual machine called
Higgs. This virtual machine comprises a JIT compiler targeted at x86-64 POSIX platforms.
The current implementation of Higgs supports most of the ECMAScript 5 specification [18],
with the exception of the with statement and the limitation that eval can only access
global variables, not locals. Its runtime and standard libraries are self-hosted, written in an
extended dialect of ECMAScript with low-level primitives. These low-level primitives are
special instructions which allow expressing type tests as well as integer and floating point
machine instructions in the source language.

In Higgs, functions are parsed into an abstract syntax tree and lazily compiled to a
Static Single Assignment (SSA) Intermediate Representation (IR) when they are first called.
Inlining is performed at this time according to simple fixed heuristic rules. Specific JavaScript
runtime functions including arithmetic, comparison and object property access primitives
are always inlined. This inlining allows exposing type tests and typed low-level operations
contained inside primitives to the backend, which implements basic block versioning.

A basic block version corresponds to a basic block and an associated context containing
type information about live values at the start of the block. Machine code generation
always begins with the function’s entry block and a default entry context being queued for
compilation. Typing contexts in Higgs are implemented as sets of pairs associating live SSA
values to unique type tags (see Section 3.2). Values for which no type information is known
do not appear in the set. As each instruction in a block is compiled, information is both
retrieved from and inserted into the current context. Information retrieved may be used to
optimize the compilation of the current instruction (e.g. eliminate type tests). Instructions
will also write their own output type in the context if known.

To guard against pathological cases where an unreasonably large number of versions
would be generated, we have added one tunable parameter, maxvers, which specifies the
maximum number of specialized versions that can be generated for any given basic block.
Before the limit for a given block is reached, requests for new versions matching an incoming
context will either find an existing exact match for the context, or compile a new version
matching the incoming context exactly. Once the limit is reached for a particular block,
requests for new versions of this block will first try to find an inexact but compatible match
for the incoming context. An existing version is compatible with the incoming context if the
value types assumed by the existing version are a subset of those specified in the incoming
context.
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VAT

Context compatibility test function:

- Perfectly matching contexzts produce score 0

- Imperfect matches produce a score > 0

- Incompatible matches produce Infinity

*/

Number contextComp (Context predCtx, Context succCtx)
{

Number score = 0;

// For each walue live 4in the successor
foreach (value in succCtx)

{

predCtx.getType (value);
succCtx.getType (value);

auto predType
auto succType

// If the successor has no known type,
// we would lose a known type
if (predType != UNKNOWN &&

succType == UNKNOWN)

score += 1

// If the types do not match,

// contexzts are incompatible

else if (predType != succType)
return Infinity;

}

return score;

Figure 1 Context compatibility test function.

The context compatibility test is shown in Figure 1. A context containing less constraining
types than the incoming context is compatible, but one that has more constraining types than
the incoming context is not. Essentially, this allows for the loss of type information when
transitioning along control flow edges. If the version limit was reached and no compatible
match is found for a given block, a fully generic version of the block that assigns the unknown
type to all live variables will be generated. This generic version is compatible with all possible
incoming contexts. When the maxvers parameter is set to zero, basic block versioning is
disabled, and only one generic version of each basic block may be generated.

3.1 Lazy Code Generation

Limiting the number of versions generated by eager basic block versioning to avoid com-
binatorial code growth is a difficult problem. Simply imposing a hard version limit is not
a satisfactory solution because it is nontrivial to determine ahead of time which typing
contexts are more probable than others, and which may not occur at all. This is particularly
problematic in a JIT compiler, since compiling versions for type combinations that will not
occur at run time translates into wasted compilation time, code bloat and poor usage of
the instruction cache. There is also the issue of ordering machine code in memory so as to
minimize the number of branches taken.

Clearly, basic block versioning ought to be guided by run time types, but gathering
profiling data using traditional means could be expensive. Furthermore, the resulting data
may be large and complex to analyze. Instead, Higgs delays the generation of block versions
and lets the run time behavior of programs drive this process. The execution of conditional
branches triggers the generation of new block versions. This is particularly useful since all
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type tests are conditional branches. Versions are generated according to the types that
actually occur at run time. This lazy code generation approach has four key benefits:

1. The order in which versions for different type combinations are generated tends to
approximate the frequency of occurrence of the said types. This is particularly helpful in
the presence of a block version limit.

2. Tt tends to produce efficient, cache-friendly linear orderings of compiled blocks in memory,
as versions are generated in the order they are first executed.

3. Neither memory nor time are wasted compiling block versions for type combinations that
never occur at run time. Type combinations that do not occur are never accounted for.

4. Unexecuted blocks are never compiled. Exception handling code is not generated for
programs which do not throw exceptions. Floating point code is not generated for
programs which do not make use of floating point values.

The Higgs backend lazily compiles versions of individual SSA basic blocks into x86-64
machine code as they are first executed. Higgs does not compile whole functions at once.
Instead, the JIT compilation model employed by Higgs interleaves execution and compilation
of basic blocks. The last instruction of a block, which must be a branch instruction, determines
which block will be compiled next. If the branch is unconditional, or if its direction can
be determined at compilation time, no branch instruction is generated, and the successor
version the branch leads to is immediately compiled (unless already compiled, in which case
a direct jump is written instead).

When a conditional branch whose direction cannot be determined at compilation time is
encountered, a pair of out-of-line stubs are generated for the two possible outcomes of the
branch, and execution resumes. Stubs, when executed, call back the compiler requesting
compilation of the corresponding destination basic block with the typing context at the
branch. The branch is then overwritten to fall through or jump to the generated basic block
version. This way, the compilation of a particular basic block version is delayed until it is
required for execution.

3.2 Type Tags and Runtime Primitives

Higgs segregates values into a few categories based on type tags [15]. These categories are:
32-bit integers (int32), 64-bit floating point values (float64), miscellaneous JavaScript
constants (const), and four kinds of garbage-collected pointers inside the heap (string,
object, array, closure). These type tags form a simple, first-degree notion of types that is
used to drive the basic block versioning approach.

We chose this coarse-grained type classification to investigate the effectiveness and
potential of basic block versioning. Higgs implements JavaScript operators as runtime library
functions written in an extended dialect of JavaScript, and most of these functions use type
tags to do type dispatching. As such, eliminating this first level of type tests as well as
boxing and unboxing overhead, is crucial to improving the performance of the system as a
whole.

Figure 2 illustrates the implementation of the + operator as an example. As can be
seen, this function makes extensive use of low-level type test primitives such as is_i32 and
is_£64 to implement dynamic dispatch based on the type tags of the input arguments. Most
other arithmetic, comparison and property access primitives implement a similar dispatch
mechanism.

Note that while according to the ES5 specification all JavaScript numbers are IEEE
double-precision floating point values, high-performance JavaScript VMs typically attempt
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function add(x, y) {
if (is_1i32(x)) { // If = is integer
if (is_i32(y)) {
if (var r = add_i32_ovf(x, y))
return r;
else // Handle the overflow case
return add_f64(i32_to_£f64(x),
i32_to_£64(y));
} else if (is_f64(y))
return add_£f64(i32_to_£f64(x), y);
} else if (is_£f64(x)) { // If z is fp
if (is_i32(y))
return add_f64(x, i32_to_£f64(y));
else if (is_£64(y))
return add_£64(x, y);
}

// Eval args as strings and concat them
return strcat(toString(x), toString(y));

Figure 2 Implementation of the + operator.

to represent small integer values using machine integers so as to improve performance by
using lower latency integer arithmetic instructions. We have made the same design choice for
Higgs. Consequently, JavaScript numbers are represented using tagged int32 or float64
values. Arithmetic operations on int32 values may yield an int32 or float64 result, but
arithmetic operations on float64 values always yield an float64 result.

3.3 Flow-based Representation Analysis

To provide a point of comparison and contrast the capabilities of basic block versioning with
that of more traditional type analysis approaches, we have implemented a forward flow-based
representation analysis that computes a fixed point on the types of SSA values. The analysis
is an adaptation of Wegbreit’s algorithm as described in [31]. It is an intraprocedural constant
propagation analysis that propagates the types of SSA values in a flow-sensitive manner.

The representation analysis uses sets of possible type tags as a type representation. It is
able to gain information from typed primitives (e.g. add_£64 produces float64 values) as
well as type tests and forward this information along branches. The analysis is also able to
deduce, in some cases, that specific branches will not be executed and ignore the effects of
code that was determined dead. The type tags are the same as those used by basic block
versioning, with the difference that basic block versioning only propagates unique known
types and not type sets (e.g. int32 U float64). This means that basic block versioning
can only propagate positive information gained from type tests whereas the analysis can
propagate both positive and negative information (e.g. a is not int32).

We have chosen to give the type analysis a richer type representation than that of basic
block versioning because several common arithmetic primitives can produce overflows that
cannot be statically predicted. This means that most arithmetic operations can produce
either int32 or float64 types. If the type analysis could not represent this type set, it would

be forced to infer that the output type of most arithmetic operations is of unknown type.

This would immediately put the type analysis at an enormous disadvantage when compared
to basic block versioning because basic block versioning is not affected by overflows that do
not occur at run time.
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function sum(n) {
for (var i=0, s=0; i<n; i++)
s += 1i;
return s;

Figure 3 The sum function.

C D E
is_i32(i)—p»is_i32(n) —» 1t_i32(i,n)—» return s
yes yes no

no no yes

F G H I
is_132(s)—» @5 _i32(i) —p s=add_i32(s,i) = overflow?

no no

s :

J K
is_132(3)—» i=add_i32(i,1) — overflow?

yes

no yes

Figure 4 Control flow graph of sum function (unexecuted parts omitted).

3.4 Concrete Example

To illustrate the lazy basic block versioning approach, we will explain the compilation of
the sum function given in Figure 3. Specifically, we trace the execution of the function call
sum(500). This only requires 32-bit integer computations because no overflows occur for this
value of n. Figure 4 shows the parts of the control flow graph of the function executed during
this call. The complete graph is larger and includes code to handle floating point values and
other types. Unexecuted parts of the control flow graph are shown as ellipses (... ).

Before versioning, there are 5 type tests on i and n executed as part of the loop. Higgs
compiles the code for the sum function incrementally, type-specializing and eliminating type
tests as compilation proceeds. The compiled and specialized code is equivalent to the control
flow graph shown in Figure 5. Multiple blocks have been specialized based on the knowledge
that i, s and n are of the int32 type. Only one type test is left, in block C1, and this type
test has been hoisted out of the loop. It is executed only once per call to sum.

The incremental compilation process occurs in six steps and is illustrated in Figure 6.
When first entering the sum function, a version of the entry block A is compiled, generating
A1. Variables s and i are initialized to int32 and this is noted in the current typing context.
Then, block B is compiled down to nothing because i is known to be int32 in the current
context. In C1, generated from block C, the type test on n needs to emit machine code
because the type of n is unknown in the current context and so must be tested. Therefore,
stubs stub_n_not_i32 and stub_D1 are generated and execution resumes at Al.

Because n contains an int32, execution flows to stub_D1, which calls back into the JIT
compiler. The branch instructions at the end of block C1 is rewritten so that a jump to a
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Al
s=0 i=0
Bl l Cl D1 El
is_i32(n)— 1t i32(i,n)—» return s
yes no

no yes

F1 |\ Gl H1 I1
s=add_i32(s,i) —» overflow?

yes

Jl K1l Ll B2
i=add i32(i,1) —» overflow? - >

yes

Figure 5 Control flow graph of sum function transformed by basic block versioning.

stub is executed only if n is not int32. In future calls of sum where n is int32, the branch
will fall through to block D1. The generation of block D1 from D is handled similarly. Two
stubs (stub_F1 and stub_E1) are used to determine the direction of the less-than comparison
branch, which is unknown at compilation time. Execution then resumes at D1 and flows
to stub_F1. This time, the JIT compiler inverts the direction of the branches at the end
of block D1 so that the fall through will be block F1. Then blocks F1, G1, H1, and I1 are
generated and execution resumes at F1.

The code is incrementally generated in this fashion by successively executing stub_J1,
stub_B2, and stub_E1. After the execution of stub_B2, the emitted code executes until
the end of the loop. In the last loop iteration, the less-than comparison in D1 fails. This
triggers compilation of the loop exit block E1, which is conveniently placed outside of the
loop body. We note that the detailed sequence of instructions needed to return from sum is
more complex than what is shown (to support JavaScript’s variable arity function calls).

The right part of Figure 6 shows the generated code after the execution of sum(500)
has completed. Type tests in blocks F1, G1 and J1 were eliminated because i, s and n are
known to be int32 at those points. The jump back to the loop header in L1 generated new
versions of blocks B and C where i, s and n are known to be int32. Hence, only the first
loop iteration performs a type test.

4 Evaluation

4.1 Experimental Setup

To assess the effectiveness of basic block versioning, we have tested it on a total of 26 classic
benchmarks from the SunSpider and Google V8 suites. One benchmark from the SunSpider
suite and one from the V8 suite were not included in our tests because Higgs does not
yet implement the required features. Benchmarks making use of regular expressions were
discarded because unlike V8 and TraceMonkey, Higgs does not implement JIT compilation
of regular expressions, and neither does Truffle JS [33, 32].
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Initial code Final code
Al: Al:

xor edx, edx ; i=0 xor edx, edx ;; i=0
Xor ecx, ecx ;; s=0 Xor ecx, ecx ;; s=0
Bl: B1: o
Cl: ;; is_i32(n) Cl: ;; is_i32(n)
cmp [byte ri13 + 26], 1 cmp [byte ri3 +.26], 1
jne stub_n_not_i32 jne stub_n_not_i32
jmp stub_D1
D1: ;; 1t_i32(i,n)
mov rl2, [qword rl4 + 208]
cmp edx, ri2d
jge E1
Execution of =
stub D1 G1:
H1: ;; s = add_i32(s,i)
add ecx, edx
I1: ;; overflow?
jo stub_overflow_1
Al: i e . Execution of "
xor edx, edx ;; i= :
XOr ecx, ecx ;; s=0 stub_F1 Ki: ;; i = add_i32(i,1)
stub_J1 add edx, 1
Bl: stub B2

Cl: ;; is_i32(n) L1: ;; overflow?
cmp [byte r13 + 26], 1 Stllb__El jo stub_overflow_2
jne stub_n_not_i32

B2:
D1: ;; 1t_i32(i,n) c2:
mov rl2, [qword rl4 + 208] jmp D1
cmp edx, ril2d
jl stub_F1 El:
jmp stub_E1 ret ;; see note

Figure 6 Machine code at different steps of code compilation.

Since Higgs interleaves compilation and execution and which parts of a program are
eventually compiled is entirely dependent on run time behavior, we have measured approx-
imate compilation times using a microsecond counter which is started and stopped when
compilation begins and ends. The total times accumulated are averaged across 10 runs to
give a final compilation time figure.

To measure execution time separately from compilation time in a manner compatible
with V8, TraceMonkey, Truffle JS and Higgs, we have modified benchmarks so that they
could be run in a loop. A number of warmup iterations are first performed so as to trigger
JIT compilation and optimization of code before timing runs take place.

The number of warmup and timing iterations were scaled so that short-running benchmarks
would execute for at least 1000ms in total during both warmup and timing. Unless otherwise
specified, all benchmarks were run for at least 10 warmup iterations and 10 timing iterations.

V8 version 3.29.66, TraceMonkey version 1.8.5+ and Truffle JS v0.5 were used for
performance comparisons. Tests were executed on a system equipped with an Intel Core
i7-4771 quad-core CPU with 8MB L3 cache and 16GB of RAM running Ubuntu Linux 12.04.
Dynamic CPU frequency scaling was disabled for our experiments.
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Figure 7 Dynamic counts of type tests executed using the representation analysis and lazy basic
block versioning with various version limits (relative to baseline).

4.2 Dynamic Type Tests

Figure 7 shows the dynamic counts of type tests for the representation analysis and for
lazy basic block versioning with various block version limits. These counts are relative to a
baseline which has the version limit set to 0, and thus only generates a generic version of each
basic block. As can be seen from the counts, the analysis produces a reduction in the number
of dynamically executed type tests over the unoptimized baseline on most benchmarks. The
basic block versioning approach does at least as well as the analysis, and almost always
significantly better. Surprisingly, even with a version cap as low as 1 version per basic block,
the versioning approach is often competitive with the representation analysis. This is likely
because most value types are monomorphic.

Raising the version cap reduces the number of type tests performed with the versioning
approach in an asymptotic manner as we get closer to the limit of what is achievable with our
implementation. The versioning approach does quite well on the bits-in-byte benchmark.
This benchmark (see Figure 8) is an ideal use case for our versioning approach. It is a tight
loop performing bitwise and arithmetic operations on integers which are all stored in local
variables. The versioning approach performs noticeably better than the analysis on this test
because it is able to test the type of the function parameter b, which is initially unknown
when entering bitsinbyte only once per function call and propagate this type thereafter.
The analysis on its own cannot achieve this, and so must repeat the test for each operation
on b. In contrast, the bitwise-and benchmark operates exclusively on global variables, for
which our system cannot extract types, and so neither the type analysis nor the versioning
approach show any improvement over baseline for this benchmark.

A breakdown of relative type test counts by kind, averaged across all benchmarks (using
the geometric mean) is shown in Figure 9. We see that the versioning approach is able to
perform as well or better than the representation analysis across each kind of type test. The
is_closure category shows the least improvement. This is because functions are typically
globals or methods, which basic block versioning cannot yet get type information about. We
note that versioning is much more effective than the analysis when it comes to eliminating
is_i32 type tests. This is because integer and floating point types often get intermixed,
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function bitsinbyte(b) {
var m = 1, ¢ = 0;
while(m < 0x100) {
if (b & m) c++;
m <<= 1;
¥
return c;

}

function TimeFunc (func) {
var x, y, t;
for (var x=0; x<350; x++)
for (var y=0; y<256; y++) func(y);
}

TimeFunc (bitsinbyte);

Figure 8 SunSpider bits-in-byte benchmark.

3 analysis [ maxvers=1 EE maxvers=5 El maxvers=oco
100% —

80% [ A SR = o TR 1

60% |-

40% ||

20%1|-|-

0,

is_int32 is_float64 is_const is_string is_object is_array is_closure total

Figure 9 Type test counts by kind of type test (relative to baseline).

leading to cases where the analysis cannot eliminate such tests. The versioning approach has
the advantage that it can replicate and detangle integer and floating point code paths. A
limit of 5 versions per block eliminates 71% of total type tests, compared to 16% for the
analysis.

4.3 Code Size Growth

Figure 10 shows the relative proportion of blocks for which different counts of versions were
generated across all benchmarks. As one might expect, the relative proportion of blocks
tends to steadily decrease as the number of versions is increased. Most basic blocks have
only one version, 5.2% have two, and just 0.16% of blocks have 5 versions or more. Hence,
blocks with a large number of versions are a rare occurrence.

The maximum number of versions ever produced for a given block across our benchmarks
is 11. This occurs in the v8-raytrace benchmark. The function generating the most block
versions in this benchmark is rayTrace. This function is at the core of the ray tracing
algorithm. It contains a loop with several live variables used during iteration. Some of these
variables can be either null or an object reference. There are also versions generated where
basic block versioning cannot determine a type for some variables.

The effects of basic block versioning on the total generated code size are shown in
Figure 11. It is interesting to note that the representation analysis almost always results in a
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Figure 11 Code size for various block version limits (relative to baseline).

slight reduction in code size. This is because the analysis allows the elimination of type tests
and the generation of more optimized code, which is usually smaller. On the other hand,
basic block versioning can generate multiple versions of basic blocks, which often (but not
always) results in more generated code. The volume of generated code does not increase
linearly with the block version limit. Rather, it tapers off as a limited number of versions
tends to be generated for each block. A limit of 5 versions per block results in a mean code
size increase of 0.19%. With no limit at all on the number of versions, the code size increase
does not change much, with a mean of 0.25% and a maximum increase of 15% across all
benchmarks. On the benchmarks we have tested, there is no pathological code size explosion,
and the block version limit is not strictly necessary.

4.4 Execution Time

Figure 12 shows the execution times relative to baseline. Because our type analysis is not
optimized for speed and incurs a significant compilation time penalty, we have excluded
compilation time and measured only time spent executing compiled machine code. A limit of
5 versions per block produces on average a 21% reduction in execution time, and speedups
of up to 1.2%, while the type analysis yields a 4% average speedup.

In most cases, basic block versioning produces a notable reduction in relative execution
time that compares favorably with the static analysis. The intraprocedural type analysis
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Figure 12 Execution time for various block version limits (relative to baseline).

does not eliminate enough type tests to be effective in improving execution times. We believe
that it should be possible to significantly improve upon the basic block versioning results
with method inlining and better optimized property accesses, which would expose more type
tests and more precise type information.

4.5 Eager Versioning

In order to evaluate the importance of lazyness in our basic block versioning approach,
we have tested an older version of Higgs which generates block versions eagerly. In this
configuration, whole methods are compiled at once, never producing stubs, and specialized
versions are generated for a given block until the block version limit is hit. The versions
are generated in no particular order. The performance obtained with eager generation of
block versions was found to be inferior on all metrics. When the version limit is set to 5, on
average, the eager approach eliminates about half as many type tests as the lazy approach,
the code size is 223% of baseline on average (see Figure 13), and the execution time is 5%
slower than baseline.

There are multiple issues with the eager generation of block versions. The most important
one is that without some form of lazyness, without code stubs, we must always produce
code for both sides of a conditional branch. In the case of eager basic block versioning, this
means we generate code for both branches of a type test, even though in most cases only
one side of the branch is ever taken. We end up generating versions for a large number
of type combinations which cannot occur at run time, but which we have no heuristic to
discard at method compilation time. The number of possible type combinations increases
exponentially with the number of live variables, and so the block version limit is rapidly
reached. Since versions are generated in no particular order, the specialized versions eagerly
generated before the block version limit is hit are likely to be versions matching irrelevant
type combinations.
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4.6 Compilation Time

The graph in Figure 14 shows a comparison of the total compilation time with the type
analysis and with different block version limits relative to baseline. The type analysis, as
implemented, is not particularly efficient because it passes around maps of SSA values to
type sets and iterates until a fixed point is reached. This is expensive and scales poorly
with program size. The analysis increases compilation time by over 100% in many cases.
In the worst case, on the earley-boyer benchmark, the analysis incurs a compilation time
slowdown of more than 100 times.

Basic block versioning does not increase compilation times by much. A limit of 5 versions
per block produces a compilation time decrease of 1.2% on average, and a 5.3%increase in
the worst case. It is interesting to note that in many cases, enabling basic block versioning
reduces compilation time by a small amount. This is because specializing code to eliminate
type checks often makes it smaller, and for some basic blocks, no machine code is generated
at all.

4.7 Comparison against the V8 Baseline Compiler

We have compared the execution time of the machine code generated by Higgs to that of the
V8 baseline compiler. The V8 baseline compiler is not to be confused with Crankshaft. It
is a low-overhead method-based JIT which, like Higgs, does not perform method inlining
and only performs basic optimizations and fast on-the-fly register allocation. It is meant to
compile code rapidly.

Figure 15 shows speedups of Higgs over V8 baseline. The scale is logarithmic, and higher
bars indicate better performance on the part of Higgs. As can be seen, Higgs delivers better
performance on more than half of the benchmarks. The three benchmarks on which V8
baseline does best are from the V8 suite, which the V8 baseline compiler was tailored to
perform best on. Higgs is able to deliver impressive speedups on a variety of benchmarks in
various areas of interest including floating point arithmetic, object-oriented data structures
and string manipulation.
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Figure 14 Compilation time for various block version limits (relative to baseline).

4.8 Comparison against TraceMonkey

The similarity of trace compilation and basic block versioning has prompted us to compare
Higgs to TraceMonkey, a tracing JIT compiler for JavaScript that was part of Mozilla’s
SpiderMonkey until mid 2011. It has the ability to eliminate type checks [13] based on
analysis of traces. Note that Higgs does not yet implement inlining of method calls whereas
TraceMonkey can inline them as part of tracing.

Figure 16 shows speedups of Higgs over TraceMonkey. The scale is again logarithmic,
with higher bars indicating better performance on the part of Higgs. TraceMonkey performs
better on many benchmarks. Unsurprisingly, the benchmarks TraceMonkey achieves the
best performance on tend to be benchmarks which include short and predictable loops. In
these, TraceMonkey is presumably able to inline all function calls which puts Higgs, without
inlining, at a significant performance disadvantage.

It is interesting that Higgs, even without inlining, does much better on some of the largest
benchmarks from our set. The two raytrace benchmarks, for example, make significant use
of object-oriented polymorphism and feature highly unpredictable conditional branches. The
earley-boyer benchmark is the largest of all and features complex control-flow. The splay
and binary-trees benchmarks apply recursive operations to tree data structures. We note
that Higgs performs much better than TraceMonkey on the recursive microbenchmark
which suggests TraceMonkey handles recursion poorly.

Higgs shines in benchmarks with complex, unpredictable control flow as well as recursive
computations. TraceMonkey is in no way the pinnacle of tracing JIT technology, but there
are clearly areas where basic block versioning unambiguously wins over this implementation
of trace compilation. Whereas tracing, in its simplest forms, is ideal for predictable loops,
basic block versioning is not biased for any kind of control-flow structures. We believe that
implementing inlining in Higgs would likely even the performance gap on the benchmarks
where Higgs currently performs worse.
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Figure 15 Speedup relative to V8 baseline (log scale, higher is better).

4.9 Comparison against Truffle JS

Figure 17 shows the relative speed of Higgs over Truffle JS on a logarithmic scale, with higher
bars indicating better performance on the part of Higgs. We have evaluated the performance
with 1, 10 and 100 warmup iterations. With 1 or 10 warmup iterations, Higgs outperforms
Truffle on the majority of benchmarks, with speedups of up to 30x in some cases.

With 100 warmup iterations, the picture changes, and Truffle outperforms Higgs on
most benchmarks. This seems to be because Truffle interprets code for a long time before
compiling and optimizing it. In contrast, Higgs only needs to compile and execute a given
code path once before it is optimized, with no warmup executions required.

Truffle has two main performance advantages over Higgs. The first is that after warmup,
Truffle is able to perform deep inlining, as illustrated by the v8-raytrace benchmark. The
second is that Truffle has sophisticated analyses which Higgs does not have. For instance,
the recorded time for the 3bits-byte microbenchmark is zero, suggesting that Truffle was
able to entirely eliminate the computation performed as its output is never used. Doing this
requires a side-effect analysis which can cope with the semantic complexities of JavaScript.

We note that even with 100 warmup iterations, and despite Truffle’s powerful optimization
capabilities, there remain several benchmarks where Higgs performs best, with speedups over
10x in some cases.

5 Related Work

The tracelet-based approach used by Facebook’s HipHop VM for PHP (HHVM) [1] bears
much similarity to our own. It is based on the JIT compilation of small code regions (tracelets)
which are single-entry multiple-exit basic blocks. Each tracelet is type-specialized based
on variable types observed at JIT compilation time. Guards are inserted at the entry of

tracelets to verify at run time that the types observed are still valid for all future executions.

High-level instructions in tracelets are specialized based on the guarded types. If these guards
fail, new versions of tracelets are compiled based on different type assumptions and chained
to the failing guards.

There are three important differences between the HHVM approach and basic block
versioning. The first is that BBV does not insert dynamic guards but instead exposes and
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Figure 16 Speedup relative to TraceMonkey (log scale, higher is better).

exploits the underlying type checks that are part of the definition of runtime primitives.
HHVM cannot do this as it uses monolithic high-level instructions to represent PHP primitives,
whereas the Higgs primitives are self-hosted and defined in an extended JavaScript dialect.
The second difference is that BBV propagates known types to successors and doesn’t usually
need to re-check the types of local variables. A third important difference is that HHVM
uses an interpreter as fallback when too many tracelet versions are generated. Higgs falls
back to generic basic block versions which do not make type assumptions but are still always
JIT compiled for better performance.

Trace compilation, originally introduced by the Dynamo [5] native code optimization
system, and later applied to JIT compilation in HotpathVM [14] aims to record long sequences
of instructions executed inside hot loops. Such linear sequences of instructions often make
optimization simpler. Type information can be accumulated along traces and used to
specialize code and remove type tests [13], overflow checks [28] or unnecessary allocations [7].
Basic block versioning resembles tracing in that context updating works on essentially linear
code fragments and code is optimized similarly to what may be done in a tracing JIT. Code
is also compiled lazily, as needed, without compiling whole functions at once.

The simplicity of basic block versioning is one of its main advantages. It does not require
external infrastructure such as an interpreter to execute code or record traces. Trace compiler
implementations must deal with corner cases that do not appear with basic block versioning.
With trace compilation, there is the potential for trace explosion if there is a large number
of control flow paths going through a loop. It is also not obvious how many times a loop
should be recorded or unrolled to maximize the elimination of type checks. This problem
is solved with basic block versioning since versioning is driven by type information. Trace
compilers must implement parameterizable policies and mechanisms to deal with recursion,
nested loops and potentially very long traces that do not fit in instruction caches.

Run time type feedback uses profiling to gather type information at execution time. This
information is then used to optimize dynamic dispatch [17]. There are similarities with basic
block versioning, which generates optimized code paths lazily based on types occurring at
run time. The two techniques are complementary. Basic block versioning could be made
more efficient by using type profiling to reorder sequences of type tests in a type dispatch.
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Figure 17 Speedup relative to Truffle JS (log scale, higher is better).

Type feedback could be augmented by using basic block versioning to generate multiple
optimized code paths. The Truffle framework uses run time type feedback combined with
guards to type-specialize AST nodes at run time [33, 32].

There have been multiple efforts to devise type analyses for dynamic languages. The Rapid
Atomic Type Analysis (RATA) [22] is an intraprocedural flow-sensitive analysis based on
abstract interpretation that aims to assign unique types to each variable inside of a function.
Attempts have also been made to define formal semantics for a subset of dynamic languages
such as JavaScript [4], Ruby [12] and Python [3], sidestepping some of the complexity of
these languages and making them more amenable to traditional type inference techniques.
There are also flow-based interprocedural type analyses for JavaScript based on sophisticated
type lattices [19][20][21]. Such analyses are usable in the context of static code analysis,
but take too long to execute to be usable in VMs and do not deal with the complexities of
dynamic code loading.

More recently, work done by Brian Hackett et al. at Mozilla resulted in an interprocedural
hybrid type analysis for JavaScript suitable for use in production JIT compilers [16]. This
analysis represents an important step forward for dynamic languages, but as with other type
analyses, must conservatively assign one type to each value, making it vulnerable to imprecise
type information polluting analysis results. Basic block versioning can help improve on the
results of such an analysis by hoisting tests out of loops and generating multiple optimized
code paths where appropriate.

Basic block versioning bears some similarities to classic compiler optimizations such
as loop unrolling [11], loop peeling [29], and tail duplication, considering it achieves some
of the same results. Another parallel can be drawn with Partial Redundancy Elimination
(PRE) [23]; the versioning approach seeks to eliminate and hoist out of loops a specific
kind of redundant computation: dynamic type tests. Code replication has also been used to
improve the effectiveness of PRE [6].

Basic block versioning is also similar to the idea of node splitting [30]. This technique
is an analysis device designed to make control flow graphs reducible and more amenable
to analysis. The path splitting algorithm implemented in the SUIF compiler [27] aims at
improving reaching definition information by replicating control flow nodes in loops to
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eliminate joins. Unlike basic block versioning, these algorithms cannot gain information from
type tests. The algorithms as presented are also specifically targeted at loops, while basic
block versioning makes no special distinction. Mueller and Whalley have developed effective
static analyses that use code replication to eliminate both unconditional and conditional
branches [24][25]. However, their approach is intended to optimize loops and operates on
a low-level intermediate representation that is not ideally suited to the elimination of type
tests in a high-level dynamic language.

Customization is a technique developed to optimize Self programs [8] that compiles
multiple copies of methods specialized on the receiver object type. Similarly, type-directed
cloning [26] clones methods based on argument types, producing more specialized code using
richer type information. The work of Chevalier-Boisvert et al. on Just-in-time specialization
for MATLAB [10] and similar work done for the MaJIC MATLAB compiler [2] tries to
capture argument types to dynamically compile optimized versions of whole functions. All
of these techniques are forms of type-driven code duplication aimed at extracting type
information. Basic block versioning operates at a lower level of granularity, allowing it to
find optimization opportunities inside of method bodies by duplicating code paths.

Basic block versioning also resembles the iterative type analysis and extended message
splitting techniques developed for Self by Craig Chambers and David Ungar [9]. This is a
combined static analysis and transformation that compiles multiple versions of loops and
duplicates control flow paths to eliminate type tests. The analysis works in an iterative
fashion, transforming the control flow graph of a function while performing a type analysis.
It integrates a mechanism to generate new versions of loops when needed, and a message
splitting algorithm to try and minimize type information lost through control flow merges.
One key disadvantage is that statically cloning code requires being conservative, generating
potentially more code than necessary, as it is impossible to statically determine exactly which
control flow paths will be taken at run time, and this must be overapproximated. Basic block
versioning is simpler to implement and generates code lazily, requiring less compilation time
and memory overhead, making it more suitable for integration into a baseline JIT compiler.

6 Limitations and Future Work

Since Higgs is a standalone JavaScript VM that is not integrated in a web browser, we have
tested it on out-of-browser benchmarks that are most relevant to using JavaScript in the
server-side space (like node.js'). We do not anticipate any issues with using basic block
versioning in a JavaScript VM integrated into a web browser, but we have not done the
integration required for such an experiment. Basic block versioning is suitable for optimizing
dynamic languages in general, not just JavaScript web applications in particular.

Several extensions to basic block versioning are possible. For instance, we have successfully
extended it to perform overflow check elimination on loop increments, but have kept this
feature disabled to simplify the presentation in this paper. Another interesting extension of
basic block versioning would be to propagate information about global variable types, object
identity and object property types. It may also be desirable to know the exact value of some
variables and object fields, particularly for values likely to remain constant.

The implementation of lazy basic block versioning evaluated in this paper only tracks
type information intraprocedurally. It would be beneficial to apply basic block versioning to
function calls so that type information can propagate from caller to callee. This would entail
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having multiple specialized entry points for parameter types encountered at the call sites of
a function. Similarly, call continuation blocks (return points) could be versioned to allow
information about return value types to flow back to the caller.

7 Conclusion

We have described a simple approach to JIT compilation called lazy basic block versioning.
This technique combines code generation with type propagation and code duplication to
produce more optimized code through the accumulation of type information during code
generation. The versioning approach is able to perform optimizations such as automatic
hoisting of type tests and efficiently detangles code paths along which multiple numerical
types can occur. Our experiments show that in most cases, basic block versioning eliminates
significantly more dynamic type tests than is possible using a traditional flow-based type
analysis. It eliminates up to 71% of type tests on average with a limit of 5 versions per block,
compared to 16% for the analysis we have tested, and never performs worse than such an
analysis.

We have empirically demonstrated that although our implementation of basic block
versioning does increase code size in some cases, the resulting increase is quite small and
pathological code size explosions are unlikely to occur. In our experiments, a limit of 5
versions per block results in a mean code size increase of just 0.19%. Our experiments with
Higgs also indicate that lazy basic block versioning improves performance up to 1.2% with a
limit of 5 versions per block. Finally, we have shown that Higgs performs better than the V8
baseline compiler on most of our benchmarks, and better than TraceMonkey on several of
the more complex benchmarks in our set.

Basic block versioning is a simple and practical technique that requires little implementa-
tion effort and offers important advantages in JIT-compiled environments where type analysis
is often difficult and costly. Dynamic languages, which perform a large number of dynamic
type tests, stand to benefit the most.

Higgs is open source and the code used in preparing this publication is available on
GitHub?.
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