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Abstract

Compilers for dynamically and statically typed languages ensure
safe execution by verifying that all operations are performed on ap-
propriate values. An operation as simple as car in Scheme and
hd in SML will include a run time check unless the compiler can
prove that the argument is always a non-empty list using some type
analysis. We present a demand-driven type analysis that can adapt
the precision of the analysis to various parts of the program being
compiled. This approach has the advantage that the analysis effort
can be spent where it is justified by the possibility of removing a
run time check, and where added precision is needed to accurately
analyze complex parts of the program. Like the k-cfa our approach
is based on abstract interpretation but it can analyze some impor-
tant programs more accurately than the k-cfa for any value of k. We
have built a prototype of our type analysis and tested it on various
programs with higher order functions. It can remove all run time
type checks in some nontrivial programs which use map and the Y
combinator.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—compilers, opti-
mization

General Terms

Languages

Keywords

Demand-driven analysis, static analysis, type analysis

1 Introduction

Optimizing compilers typically consist of two components: a pro-
gram analyzer and a program transformer. The goal of the ana-
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(let ((f (lambda (a b) (cons1 (car2 a) b)))
(i (lambda (c) c)))

(let ((j (lambda (d) (3i d))))
(car4 (f (f (cons5 5 ’())

(cons6 6 ’()))
(7i (cons8 8 (9i ’())))))))

Figure 1. A Scheme program under analysis

lyzer is to determine various attributes of the program so that the
transformer can decide which optimizations are possible and worth-
while. To avoid missing optimization opportunities the analyzer
typically computes a very large set of attributes to a predetermined
level of detail. This wastes time because the transformer only uses
a small subset of these attributes and some attributes are more de-
tailed than required. Moreover the transformer may require a level
of detail for some attributes which is higher than what was deter-
mined by the analyzer.

Consider a compiler for Scheme that optimizes calls to car by re-
moving the run time type check when the argument is known to be
a pair. The compiler could use the 0-cfa analysis [8, 9] to compute
for every variable of a program the (conservative) set of allocation
points in the program that create a value (pair, function, number,
etc) that can be bound to an instance of that variable. In the pro-
gram fragment shown in Figure 1 the 0-cfa analysis computes that
only pairs, created by cons1 and cons5 , can be bound to instances
of the variable a and consequently the transformer can safely re-
move the run time type check in the call to car2 .

Note that the 0-cfa analysis wasted time computing the properties
of variable b which are not needed by the transformer. Had there
been a call (car b) in f’s body it would take the more complex 1-
cfa analysis to discover that only a pair created by cons6 and cons8

can be bound to an instance of variable b; the 0-cfa does not exclude
that the empty list can be bound to b because the empty list can be
bound to c and returned by function i. The 1-cfa analysis achieves
this higher precision by using an abstract execution model which
partitions the instances of a particular variable on the basis of the
call sites that create these instances. Consequently it distinguishes
the instances of variable c created by the call (7i (cons ...))
and those created by the call (9i ’()), allowing it to narrow the
type returned by (7i (cons ...)) to pairs only. If these two
calls to i are replaced by calls to j then the 2-cfa analysis would
be needed to fully remove all type checks on calls to car. By using
an abstract execution model that keeps track of call chains up to a
length of 2 the 2-cfa analysis distinguishes the instances of variable
c created by the call chain (7j (cons ...)) → (3i d) and the
call chain (9j ’()) → (3i d). The compiler implementer (or
user) is faced with the difficult task of finding for each program
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Exp := #fl l ∈ Lab
| xl x ∈ Var, l ∈ Lab
| (le1 e2) l ∈ Lab, e1,e2 ∈ Exp
| (λlx. e1) l ∈ Lab, x ∈ Var,e1 ∈ Exp
| (ifl e1 e2 e3) l ∈ Lab, e1,e2,e3 ∈ Exp
| (consl e1 e2) l ∈ Lab, e1,e2 ∈ Exp
| (carl e1) l ∈ Lab, e1 ∈ Exp
| (cdrl e1) l ∈ Lab, e1 ∈ Exp
| (pair?l e1) l ∈ Lab, e1 ∈ Exp

Lab := Labels
Var := Variables

Figure 2. Syntax of the Source Language

an acceptable trade-off between the extent of optimization and the
value of k and compile time.

The analysis approach presented in this paper is a demand-driven
type analysis that adapts the analysis to the source program. The
work performed by the analyzer is driven by the need to deter-
mine which run time type checks can be safely removed. By be-
ing demand-driven the analyzer avoids performing useless analysis
work and performs deeper analysis for specific parts of the program
when it may result in the removal of a run time type check. This
is achieved by changing the abstract execution model dynamically
to increase the precision where it appears to be beneficial. Like the
k-cfa our analysis is based on abstract interpretation. As explained
in Section 4, our models use lexical contours instead of call chains.
Some important programs analyzed with our approach are more ac-
curately analyzed than with the k-cfa for any value of k (see Sec-
tion 6). In particular, some programs with higher order functions,
including uses of map and the Y combinator, are analyzed precisely.

Our demand-driven analysis does not place a priori limits on the
precision of the analysis. This has the advantage that the analysis
effort can be varied according to the complexity of the source pro-
gram and in different parts of the same program. On the other hand,
the analysis may not terminate for programs where it is difficult or
impossible to prove that a particular type check can be removed.
We take the pragmatic point of view that it is up to the user to de-
cide what is the maximal optimization effort (limit on the time or on
some other resource) the compiler should expend. The type checks
that could not be removed within this time are simply kept in the
generated code. We think this is better than giving the user the
choice of an “optimization level” (such as the k to use in a k-cfa)
because there is a more direct link with compilation time.

Although our motivation is the efficient compilation of Scheme, the
analysis is also applicable to languages such as SML and Haskell
for the removal of run time pattern-matching checks. Indeed the
previous example can be translated directly in these statically typed
languages, where the run time type checks are in the calls to hd.

After a brief description of the source language we explain the ana-
lyzer, the abstract execution models and the processing of demands.
Experimental results obtained with a prototype of our analyzer are
then presented.

2 Source Language

The source language of the analysis is a purely functional language
similar to Scheme and with only three data types: the false value,
pairs and one argument functions. Each expression is uniquely la-
beled to allow easy identification in the source program. The syntax
is given in Figure 2.

Val↑ := Err ∪̇ Val 1

Err := Errors

Val := ValB ∪̇ ValC ∪̇ ValP
ValB := {#f} Booleans

ValC := Val → Val↑ Closures
ValP := Val×Val Pairs
Env := Var → Val

E : Exp → Env → Val↑ Evaluation function
E [[#fl ]] ρ = #f
E [[xl]] ρ = ρ x
E [[(le1 e2)]] ρ = C (E [[e1]] ρ)

(λv1. C (E [[e2]] ρ) (A v1))
E [[(λlx. e1)]] ρ = λv. E [[e1]] ρ[x 	→ v]
E [[(ifl e1 e2 e3)]] ρ = C (E [[e1]] ρ)

(λv. v 
= #f ? E [[e2]] ρ : E [[e3]] ρ)
E [[(consl e1 e2)]] ρ = C (E [[e1]] ρ)

(λv1. C (E [[e2]] ρ) (λv2. (v1, v2)))
E [[(carl e1)]] ρ = C (E [[e1]] ρ)

(λv. v = (v1, v2) ? v1 : ERROR)
E [[(cdrl e1)]] ρ = C (E [[e1]] ρ)

(λv. v = (v1, v2) ? v2 : ERROR)
E [[(pair?l e1)]] ρ = C (E [[e1]] ρ)

(λv. v ∈ ValP ? v : #f)

A : Val → Val → Val↑ Apply function
A f v = f ∈ ValC ? f v : ERROR

C : Val↑ → (Val → Val↑) → Val↑ Check function
C v k = v ∈ Err ? v : k v

Figure 3. Semantics of the Source Language

There is no built-in letrec special form. The Y combinator must
be written explicitly when defining recursive functions. Note also
that cons, car, cdr and pair? are treated as special forms.

The semantics of the language is given in Figure 3. A notable de-
parture from the Scheme semantics is that pair? returns its argu-
ment when it is a pair. The only operations that may require a run
time type check are car and cdr (the argument must be a pair) and
function call (the function position must be a function).

3 Analysis Framework

To be able to modify the abstract evaluation model during the anal-
ysis of the program we use an analysis framework. The framework
is a parameterized analysis general enough to be used for type anal-
ysis, as we do here, as well as a variety of other program analyses.
When the specifications of an abstract evaluation model are fed to
the framework an analysis instance is obtained which can then be
used to analyze the program.

The analysis instance is composed of a set of evaluation constraints
that is produced from the framework parameters and the program.
These constraints represent an abstract interpretation of the pro-
gram. The analysis of the program amounts to solving the set of
constraints. The solution is the analysis results. From the pro-
gram and the framework parameters can also be produced the safety
constraints which indicate at which program points run time type
checks may be needed. It is by confronting the analysis results with
the safety constraints that redundant type checks are identified. If
all the safety constraints are satisfied, all the type checks can be
removed by the optimizer. A detailed description of the analysis

1The ∪̇ operator is the disjoint union, i.e. the sets to combine
must be disjoint.
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V alB 
= /0 Abstract Booleans
V alC 
= /0 Abstract closures
V alP 
= /0 Abstract pairs
Cont 
= /0 Contours
k0 ∈ Cont Main contour
cc : Lab×Cont → V alC Abstract closure creation
pc : Lab×V al ×V al ×Cont → V alP

Abstract pair creation
call : Lab×V alC ×V al ×Cont → Cont

Contour selection

where V al := V alB ∪̇ V alC ∪̇ V alP
subject to |V al | < ∞ and |Cont | < ∞

Figure 4. Instantiation parameters of the analysis framework

Value of el in k:
αl,k ⊆ V al l ∈ Lab, k ∈ Cont

Contents of x in k:
βx,k ⊆ V al x ∈ Var, k ∈ Cont

Return value of c with its body in k:
γc,k ⊆ V al c ∈ V alC, k ∈ Cont

Flag indicating evaluation of el in k:
δl,k ⊆ V al l ∈ Lab, k ∈ Cont

Creation circumstances of c:

χc ⊆ cc−1(c) c ∈ V alC
Creation circumstances of p:

πp ⊆ pc−1(p) p∈ V alP
Circumstances leading to k:

κk ⊆ call−1(k) k ∈ Cont

Figure 5. Matrices containing the results of an analysis

framework and its implementation is given in [4]. Here we only
give an overview of the framework.

3.1 Framework Parameters

Figure 4 presents the framework parameters that specify the ab-
stract evaluation model. The interface is simple and flexible. Four
abstract domains, the main contour, and three abstract evaluation
functions have to be provided to the framework.

V alB , V alC, and V alP are the abstract domains for the Booleans,
closures, and pairs. They must be non-empty and mutually disjoint.
V al is the union of these three domains. Cont is the abstract do-
main of contours. Contours are abstract versions of the evaluation
contexts in which expressions of the program get concretely evalu-
ated. The part of the evaluation contexts that is abstractly modeled
by the contours may be the lexical environment, the continuation,
or a combination of both. The main contour k0 indicates in which
abstract contour the main expression of the program is to be evalu-
ated.

The abstract evaluation functions cc, pc, and call specify closure
creation, pair creation, and how the contour is selected when a func-
tion call occurs. cc(l,k) returns the abstract closure created when
the λ-expression el is evaluated in contour k. pc(l,v1,v2,k) returns
the abstract pair created by the cons-expression labeled l evaluated
in contour k with arguments v1 and v2. Finally, call(l,c,v,k) indi-
cates the contour in which the body of closure c is evaluated when c
is called from the call-expression el in contour k and with argument
v.

Any group of modeling parameters that satisfies the constraints
given in Figure 4 is a valid abstract evaluation model for the frame-
work.

〈mPat〉 := ∀ | #f | λ∀ | λl k | (P, P′)
where l ∈ Lab, k ∈ 〈mkPat〉, P,P′ ∈ 〈mPat〉

〈sPat〉 := ⋆ | λ⋆ | λl k | (P, P′) | (P′
, P)

where l ∈ Lab, k ∈ 〈skPat〉,
P ∈ 〈sPat〉, P′ ∈ 〈mPat〉

〈mkPat〉 := (P1 . . .Pn)
where ∀1≤ j≤n. Pj ∈ 〈mPat〉

〈skPat〉 := (P1 . . .Pi . . .Pn)
where Pi ∈ 〈sPat〉, ∀1≤ j≤n

j 
=i

. Pj ∈ 〈mPat〉

Figure 6. Syntax of patterns

3.2 Analysis Results

The analysis results are returned in the seven abstract matrices
shown in Figure 5. Matrices α, β, and γ indicate respectively the
value of the expressions, the value of the variables, and the return
value of closures. The value βx,k is defined as follows. Assume that
closure c was created by λ-expression (λlx. el′). Then if c is called
and the call function prescribes contour k for the evaluation of c’s
body, then parameter x will be bound to the abstract value βx,k.

δl,k indicates whether or not expression el is evaluated in contour k.
el is evaluated in contour k if and only if δl,k 
= /0. Apparently, δl,k

should have been defined as a Boolean instead of a set. However,
the use of sets makes the implementation of the analysis framework
simpler (see [4]).

Matrices χ, π, and κ are logs keeping the circumstances prevailing
when the different closures, pairs, and contours, respectively, are
created. For example, if during the abstract interpretation of the
program a pair p is created at expression el with values v1 and v2

and in contour k, then this creation of p is logged into πp. That is,
(l,v1,v2,k) ∈ πp. Most of the time, the circumstances logged into
the log variables are much fewer than what they can theoretically
be. In other words, πp usually contains fewer values than pc−1(p).
Similarly, when closure c = cc(l,k) is created by the evaluation of el

in k, (l, k) is inserted in χc. And when contour k′ = call(l, f ,v,k) is
selected to be the contour in which the body of f is to be evaluated
when f gets invoked on v at el in k, (l, f , v, k) is inserted in κk′ .

4 Pattern-Based Models

In the demand-driven type analysis we use patterns and pattern-
matchers to implement abstract evaluation models. Patterns con-
stitute the abstract values (V al ) and the abstract contours (Cont).
Abstract values are shallow versions of the concrete values and ab-
stract contours are shallow versions of the lexical environments.
These lexical contours are one of the features distinguishing our
analysis from most type and control-flow analyses which typically
use call chains. A call chain is a string of the labels of the k nearest
enclosing dynamic calls. Although the use of call chains guarantees
polynomial-time analyses, it can also be fooled easily. We believe
that lexical contours provide a much more robust way to abstract
concrete evaluation contexts.

Figure 6 gives the syntax of patterns. There are two kinds of pat-
terns: modeling patterns (〈mPat〉 and 〈mkPat〉) and split patterns
(〈sPat〉 and 〈skPat〉). For both modeling patterns and split patterns,
there is a value variant (〈mPat〉 and 〈sPat〉) and a contour variant
(〈mkPat〉 and 〈skPat〉). Split patterns contain a single split point
that is designated by ⋆. They are used in the demands that drive
the analysis (in split demands, more precisely). Modeling patterns
contain no split point. They form the representation of the abstract
values and contours.
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ր⊆ Val×〈mPat〉
v ր∀, if v ∈ Val
#f ր #f
c ր λ∀, if c ∈ ValC
c ր λl k, if c ∈ ValC, c = E [[(λlx. e)]] ρ, and

ρ րl k
(v, w) ր (P1, P2),

if v ր P1 and w ր P2

ρ րl (), if ρ is valid at label l 2 and

Dom(ρ) = /0 3

ρ րl (P1 P2 . . . Pn),
if ρ is valid at label l,

x is the innermost variable in Dom(ρ),
ρ x ր P1,
el′ = (λl′x. e), and

ρ [x 	→ ⊥] րl′ (P2 . . . Pn)
4

Figure 7. Formal definition of relation “is abstracted by”

4.1 Meaning of Patterns

Modeling patterns represent abstract values, which in turn can be
seen as sets of concrete values. Pattern ∀ abstracts any value, pat-
tern #f abstracts the Boolean value #f, pattern λ∀ abstracts any clo-
sure, pattern λl k abstracts any closure coming from λ-expression
labeled l and having a definition environment that can be abstracted
by k ∈ 〈mkPat〉, and pattern (P1, P2) abstracts any pair whose com-
ponents can be abstracted by P1 and P2, respectively. The difference
between abstract values and concrete values is that an abstract value
can be made imprecise by having parts of it cut off using ∀ and λ∀.

Modeling contour patterns appear in the modeling patterns of clo-
sures. To simplify, we use the term contour to mean modeling con-
tour pattern. Contours abstract lexical environments. A contour is
a list with an abstract value for each variable visible from a certain
label (from the innermost variable to the outermost). For example,
the contour (λ∀ (∀, ∀)) indicates that the innermost variable (say
y) is a closure and the other (say x), is a pair. It could abstract the
following concrete environment:5

· [x 	→ (#f, #f)] [y 	→ E [[(λlz. #fl′)]] ·]

A formal definition of what concrete values are abstracted by what
abstract values is given in Figure 7. The relation ր⊆ Val×〈mPat〉
relates concrete and abstract values such that v ր P means that v
is abstracted by P. We mention (without proof) that any concrete
value obtained during execution of the program can be abstracted
by a modeling pattern that is perfectly accurate. That is, the latter
abstracts only one concrete value, which is the former.

The split patterns and split contour patterns are used to express
split demands that increase the precision of the abstract evaluation
model. Their structure is similar to that of the modeling patterns but
they include one and only one split point (⋆) that indicates exactly
where in an abstract value an improvement in the precision of the
model is requested. Their utility will be made clearer in Section 5.
Operations on split patterns are explained next.

2ρ is valid at label l if its domain is exactly the set of variables
that are visible from el .

3Dom( f ) denotes the domain of function f .
4‘⊥’ denotes an undefined value. Consequently, ρ [x 	→⊥] is the

same environment as ρ but without the binding to x.
5The empty concrete environment, ·, contains no bindings.

∩ : (〈sPat〉∪〈mPat〉)× (〈sPat〉∪〈mPat〉)
→ (〈sPat〉∪〈mPat〉)

P1 ∩P2 is undefined if P1,P2 ∈ 〈sPat〉
∀∩P2 = P2

P1 ∩∀ = P1

⋆∩P2 = ⋆

P1 ∩⋆ = ⋆

#f∩#f = #f
λ∀∩P2= P2, if P2 = λ∀ or P2 = λl (P′

1 . . .P′
n)

P1 ∩λ∀= P1, if P1 = λ∀ or P1 = λl (P′
1 . . .P′

n)
λ⋆ ∩P2= λ⋆, if P2 = λ∀ or P2 = λl (P′

1 . . .P′
n)

P1 ∩λ⋆= λ⋆, if P1 = λ∀ or P1 = λl (P′
1 . . .P′

n)
λl (P1 . . .Pn)∩λl (P′

1 . . .P′
n)

= λl (P′′
1 . . .P′′

n ),
if P′′

i = Pi ∩P′
i , ∀1 ≤ i ≤ n

(P1, P2)∩ (P′
1, P′

2)
= (P′′

1 , P′′
2 ),

if P′′
1 = P1 ∩P′

1 and P′′
2 = P2 ∩P′

2

Figure 8. Algorithm for computing the intersection between
two patterns

4.2 Pattern Intersection

Although the ր relation provides a formal definition of when a
concrete value is abstracted by an abstract value, and, by extension,
when an abstract value is abstracted by another, it is not necessarily
expressed as an algorithm. Moreover, the demand-driven analysis
does not manipulate concrete values, only patterns of all kinds. So
we present a method to test whether an abstract value is abstracted
by another. More generally, we want to be able to test whether a
(modeling or split) pattern intersects with another. Similarly for
both kinds of contour patterns.

The intersection between patterns is defined in Figure 8. It is par-
tially defined because two patterns may be incompatible, in the
sense that they do not have an intersection and as such, their empty
intersection cannot be represented using patterns, or as the inter-
section of two split patterns may create something having two split
points. The equations in the figure should be seen as cases to try in
order from the first to the last until, possibly, a case applies.

A pattern P intersects with another pattern P′ if the intersection
function is defined when applied to P and P′. Moreover, when P
intersects with P′, the resulting intersection P′′ = P∩P′ is charac-
terized by:6

{v ∈ Val | v ր P′′} = {v ∈ Val | v ր P ∧ v ր P′}

4.3 Spreading on Split Patterns

Another relation that is needed to perform the demand-driven anal-
ysis is the spreading test. It is useful in determining if a given split
pattern will increase the precision of the model if it is used in a
split demand. Spreading can occur between a set of abstract val-
ues (modeling patterns) and a split pattern. A split pattern can be
thought of as denoting a sub-division: the set of its abstracted con-
crete value is partitioned into a number of sets corresponding to the
different possibilities seen at the split point. Each of those sets is
called a bucket. For example, the pattern ⋆ abstracts all values, that
is, Val. It sub-divides Val into three buckets: ValB, ValC, and ValP.
Spreading occurs between the set of abstract values V and the split

6Provided that we consider ‘⋆’ and ‘λ⋆’ to abstract all concrete
values and all concrete closures, respectively.
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րցւտ⊆ 2〈mPat〉×〈sPat〉
S րցւտ P, if ∀ ∈ S
S րցւտ ⋆, if #f ∈ S and S\{#f} 
= /0, or

S∩T 
= /0 
= S\T

where T = {(P, P′) | P,P′ ∈ 〈mPat〉}
S րցւտ P, if S\T 
= /0 and T րցւտ P

where T = {P′ ∈ S | P′ intersects with P}
S րցւտ P, if λ∀ ∈ S

S րցւտ λ⋆, if λl (P1 . . .Pm),λl′ (P′
1 . . .P′

n) ∈ S
and l 
= l′

S րցւտ λl (P1 . . .Pi . . .Pn),
if Pi ∈ 〈sPat〉 and T րցւտ Pi

where T = {P′
i | λl (P′

1 . . .P′
i . . .P′

n) ∈ S}
S րցւտ (P1, P2), if P1 ∈ 〈sPat〉 and T րցւտ P1

where T = {P′
1 | (P

′
1, P′

2) ∈ S}
S րցւտ (P1, P2), if P2 ∈ 〈sPat〉 and T րցւտ P2

where T = {P′
2 | (P

′
1, P′

2) ∈ S}

Figure 9. Algorithm for the relation “is spread on”

pattern P if some two values (or refinements of values) in V that are
abstracted by P fall into different buckets. We say that V is spread
on split pattern P and denote it with V րցւտP. Figure 9 gives a formal
definition of րցւտ. As with the ∩ operator, cases should be tried in
order.

Mathematically, the relation րցւտ has the following meaning. The set
of abstract values S is spread on the split pattern P, denoted S րցւտ P,
if:

∃P1,P2 ∈ S. ∃v1,v2 ∈ Val. ∀P′ ∈ {PB ,PC ,PP }.
v1 ր P1 ∧ v2 ր P2 ∧
v1 ր P ∧ v2 ր P ∧
(v1 ր P′ ⇒¬(v2 ր P′))

where PB , PC , and PP are modeling patterns obtained by replacing
‘⋆’ in P by #f, λ∀, and (∀, ∀), respectively.

4.4 Model Implementation

An abstract value can be viewed as a concrete value that has gone
through a projection. Similarly, a contour can be viewed as a lexical
environment that has gone through a projection. If one arranges for
the image of the projection to be finite, then one obtains the desired
abstract domains V alB , V alC, V alP , and Cont .

But which projection should be used? The ր relation is not of
much help since, generally, for a concrete value v, there may be
more than one abstract value v̂ such that v ր v̂. So a projection
based on ր would be ill-defined.

The projection we use is based on an exhaustive non-redundant
pattern-matcher. That is, the pattern-matcher implementing the pro-
jection of the values is a finite set of modeling patterns. For any
concrete value v, there will exist one and only one modeling pattern
v̂ in the set such that v ր v̂. Such a pattern-matcher describes a
finite partition of Val.

For example, the simplest projection for the values is:7

{#f, λ∀, (∀, ∀)}

It is finite, exhaustive and non-redundant.

7This is not exactly true. The simplest pattern-matcher would
be the trivial one, {∀}, but it would not implement a legal model
for the framework since an abstract model must at least distinguish
the Booleans, the closures, and the pairs.

As for the projection of contours, we use one pattern-matcher per λ-
expression. For a given λ-expression el , the lexical environment in
which its body is evaluated can be projected by the pattern-matcher
Ml . The empty lexical environment is always projected onto the list
of length 0, as the empty list is the only contour that abstracts the
empty environment.

The simplest contour pattern-matcher Ml for expression (λlx. el′)
is {(∀ . . . ∀)}, it is a single list having as many entries as there are
visible variables in the environment in which el′ is evaluated.

Having a pattern-matcher Mv that projects values and a family
of pattern-matchers {Mi | . . .} that project lexical environments,
and assuming that Mv projects closures coming from different λ-
expressions to different abstract closures, it is easy to create an ab-
stract model, i.e. to define the parameters of the analysis framework,
as follows.

• V alB is {#f}

• V alC is {λl k ∈ Mv}

• V alP is {(v1, v2) ∈ Mv}

• Cont is () ∪
S

i Mi

• k0 is ()

• cc(l,k) is the projection of λl k by Mv

• pc(l,v1,v2,k) is the projection of (v1, v2) by Mv

• call(l,λl (w1 . . . wn),v,k) is the projection of (v w1 . . . wn) by
Ml

4.5 Maintaining Model Consistency

One remaining problem that requires special attention is consis-
tency. During the demand-driven analysis, pattern-matchers are not
used to project concrete values, but abstract values. If one of the
abstract values is not precise enough the projection operation may
become ill-defined. In general, abstract values abstract a set of con-
crete values. Suppose that v̂1 is such an imprecise abstract value.
Now, let v̂2 be a modeling pattern that contains v̂1 as a sub-pattern.
We want to project v̂2 in order to obtain the resulting abstract value.
A sensible definition for the projection of v̂2 consists in choosing a
modeling pattern ŵ in the pattern-matcher M such that all concrete
values abstracted by v̂2 are abstracted by ŵ. Unfortunately, such a
ŵ may not exist as it may take the union of many modeling patterns
of M to properly abstract all the concrete values abstracted by v̂2.

Here is an example to help clarifying this notion. The following
pattern-matcher M, intended for the projection of values, is incon-
sistent:







#f, (∀, #f), (∀, (#f, ∀)),
λ∀, (∀, λ∀), (∀, (λ∀, ∀)),

(∀, ((∀, ∀), ∀))







Note that the pattern-matcher is finite, exhaustive, and non-redun-
dant but nevertheless inconsistent. Before explaining why, let us
see how it models the values. First, it distinguishes the values by
their (top-level) type. Second, it distinguishes the pairs by the type
of the value in the CDR-field. Finally, the pairs containing a sub-
pair in the CDR-field are distinguished by the type of the value in
the CAR-field of the sub-pair. Note that the CAR-field of the sub-
pairs is more precisely described than the CAR-field of the pairs
themselves. This is the inconsistency. Problems occur when we try
to make a pair with another pair in the CDR-field. Let us try to make
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PM := PMO | PMC | PML

PMO := Onode [V al ⇒ M1] |
Onode [V alB ⇒ M1, V alC ⇒ M2, V alP ⇒ M3]

where M1,M2,M3 ∈ PM
PMC := Cnode [Lab ⇒ M1] |

Cnode [l1 ⇒ M1, . . . , ln ⇒ Mn]
where M1, . . . ,Mn ∈ PM
and {l1, . . . , ln} = {l ∈ Lab | el is a λ-expr.}

PML := Leaf 〈mPat〉 | Leaf 〈mkPat〉

Figure 10. Implementation of the pattern-matchers

To project P ∈ 〈mPat〉 with M ∈ PM,
compute pm(M, [ ]⊳P), and

to project (P1 . . .Pn) ∈ 〈mkPat〉 with M ∈ PM,
compute pm(M, [ ]⊳P1 ⊳ . . . ⊳Pn), where

pm : PM× [queue of 〈mPat〉] → 〈mPat〉∪〈mkPat〉
pm(Onode [V al ⇒ M1], P⊳q)

= pm(M1, q)
pm(Onode [V alB ⇒ M1, . . .], #f ⊳q)

= pm(M1, q)
pm(Onode [. . . ,V alC ⇒ M2, . . .], P⊳q)

= pm(M2, q⊳P)
if P = λ∀ or P = λl (P1 . . .Pn)

pm(Onode [. . . ,V alP ⇒ M3], (P1, P2)⊳q)
= pm(M3, q⊳P1 ⊳P2)

pm(Cnode [Lab ⇒ M1], P⊳q)
= pm(M1, q)

pm(Cnode [. . . , li ⇒ Mi, . . .], λli (P1 . . .Pn)⊳q)
= pm(Mi, q⊳P1 ⊳ . . . ⊳Pn)

pm(Leaf P, [ ])
= P

Figure 11. Pattern-matching algorithm

a pair with the values #f and (∀, (#f, ∀)). We obtain the modeling
pattern v̂ = (#f, (∀, (#f, ∀))) and we have to project it using M. It is
clear that we cannot non-ambiguously choose one of the modeling
patterns of M as an abstraction of all the values abstracted by v̂.

In order to avoid inconsistencies, each time an entity is refined in
one of the pattern-matchers, we must ensure that the abstract val-
ues and the contours on which the refined entity depends are suffi-
ciently precise. If not, cascaded refinements are propagated to the
dependencies of the entity. This cascade terminates since, for each
propagation, the depth at which the extra details are required de-
creases.

4.6 Pattern-Matcher Implementation

Our implementation of the pattern-matchers is quite simple. A
pattern-matcher is basically a decision tree doing a breadth-first
inspection of the modeling pattern or modeling contour pattern to
project. An internal node of the decision tree is either an O-node
(object) or a C-node (closure). A leaf contains an abstract value
or a contour which is the result of the projection. Each O-node
is either a three-way switch that depends on the type of the ob-
ject to inspect or is a one-way catch-all that ignores the object and
continues with its single child. Each C-node is either a multi-way
switch that depends on the label of the closure to inspect or is a one-
way catch-all that ignores the closure and continues with its single
child. Figure 10 presents the data structures used to implement the
pattern-matchers.

〈demand〉 := show a ⊆ B
where a ∈ 〈α-var〉,B ∈ 〈bound〉

| split s P
where s ∈ 〈splittee〉,P ∈ 〈sPat〉

| show d = /0
where d ∈ 〈δ-var〉

| bad-call l P′ P′′ k

where l ∈ Lab,P′,P′′ ∈ 〈mPat〉,k ∈ 〈mkPat〉
〈bound〉 := V alB | V alC | V alP | V alT rues
〈splittee〉 := V alC | V alP | a | b | c

where a ∈ 〈α-var〉,b ∈ 〈β-var〉,c ∈ 〈γ-var〉
〈α-var〉 := αl,k where l ∈ Lab,k ∈ 〈mkPat〉
〈β-var〉 := βx,k,l where x ∈ Var,k ∈ 〈mkPat〉, l ∈ Lab
〈γ-var〉 := γc,k where c ∈ 〈mPat〉,k ∈ 〈mkPat〉
〈δ-var〉 := δl,k where l ∈ Lab,k ∈ 〈mkPat〉

Figure 12. Syntax of demands

The pattern-matching algorithm is presented in Figure 11. The
breadth-first traversal is done using a queue. The contents of the
queue always remain synchronized with the position in the deci-
sion tree. That is, when a C-node is reached, a closure is next on
the queue, and when a leaf is reached, the queue is empty. The ini-
tial queue for an abstract value projection contains only the abstract
value itself. The initial queue for a contour projection contains all
the abstract values contained in the contour, with the first abstract
value of the contour being the first to be extracted from the queue.
To keep the notation terse, we use the view operation ⊳ both to en-
queue and dequeue values. When enqueuing, the queue is on the
left of ⊳. When dequeuing, the queue is on the right of ⊳. The
empty queue is denoted by [ ].

The pattern-matchers used in the initial abstract model are the fol-
lowing. Note that we describe them in terms of set theory and not
in terms of the actual data structures. The value pattern-matcher
contains one abstract Boolean, one abstract pair, and one abstract
closure for each λ-expression. For each λ-expression, its corre-
sponding contour pattern-matcher is the trivial one. Note that they
are consistent as the pattern-matchers are almost blind to any de-
tail. The only inspection that is performed is the switch on the la-
bel when projecting a closure. However, the projection of closures
always involves closures with explicit labels since it only occurs
through the use of the abstract model function cc.

We do not give a detailed description of the process of refining a
pattern-matcher because it would be lengthy and it is not conceptu-
ally difficult.

5 Demand Processing

Figure 12 presents the syntax of demands. The syntax of the de-
mands builds on the syntax of the patterns. There are show de-
mands, split demands, and bad call demands.

5.1 Meaning of Demands

A show demand asks for the demonstration of a certain property.
For example, it might ask for demonstration that a particular ab-
stract variable must only contain pairs, meaning that a certain ex-
pression, in a certain evaluation context, must only evaluate to pairs.
Or it might ask for the demonstration that a particular abstract vari-
able must be empty, meaning that a certain expression, in a certain
evaluation context, must not get evaluated. Note that the bound
V alT rues represents the values acting as true in the conditionals.
That is, V alT rues = V alC ∪̇ V alP .
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A bad call demand asks for the demonstration that a particular func-
tion call cannot happen. It specifies where and in which contour
the bad call currently happens, which function is called, and which
value is passed as an argument. Of course, except for the label, the
parameters of the demand are abstract.

A split demand asks that proper modifications be done on the model
in such a way that the splittee is no longer spread on the pattern.
Take this demand for example: split αl,k ⋆. It asks that the abstract
values contained in αl,k be distinguished by their type (because of
the pattern ⋆). If the variable αl,k currently contains abstract values
of different types, then these values are said to be spread on the
pattern ⋆. Then the model ought to be modified in such a way that
the contour k has been subdivided into a number of sub-contours
k1, . . . , kn, such that αl,ki

contains only abstract values of a single
type, for 1 ≤ i ≤ n. In case of success, one might observe that αl,k1

contains only pairs, αl,k2
, only closures, αl,k3

, nothing, αl,k4
, only

#f, etc. That is, the value of expression el in contour k would have
been split according to the type.

In a split demand, the splittee can be an aspect of the abstract model
(when it is V alC or V alP ) or an abstract variable from one of
the α, β, or γ matrices. A splittee in 〈β-var〉 does not denote an
ordinary entry in the β matrix. It does indicate the name of the
source variable but it also gives a label and a contour where this
variable is referenced (not bound).

Only the values that intersect with the pattern are concerned by the
split. For example, if the demand is split αl,k (∀, ⋆) and αl,k =
{#f,(#f, #f),(#f, λ∀)}, the only thing that matters is that the two
abstract pairs must be separated. What happens with the Boolean is
not important because it does not intersect with the pattern (∀, ⋆).

Normally, a show demand is emitted because the analysis has deter-
mined that, if the specified property was false, then a type error will
most plausibly happen in the real program. Similarly for a bad call
demand. Unfortunately, split demands do not have such a natural
interpretation. They are a purely artificial creation necessary for the
demand-driven analysis to perform its task. Moreover, during the
concrete evaluation of the program, an expression, in a particular
evaluation context, evaluates to exactly one value. So splitting in
the concrete evaluation is meaningless.

5.2 Demand-Driven Analysis Algorithm

The main algorithm of the demand-driven analysis is relatively sim-
ple. It is sketched in Figure 13. Basically, it is an analysis/model-
update cycle. The analysis phase analyses the program using
the framework parameterized by the current abstract model. The
model-update phase computes, when possible, a model-updating
demand based on the current analysis results and applies it to the
model. Note that the successive updates of the abstract model
make it increasingly refined and the analysis results that it helps to
produce improve monotonically. Consequently, any run time type
check that is proved to be redundant at some point remains as such
for the rest of the cycle.

The steps performed during the model-update phase are: the ini-
tial demands are gathered; demand processing (of the demands that
do not modify the model) and call monitoring occur until no new
demands can be generated; if there are model-updating demands,
the best one is selected and applied on the model. The model-
modifying demands are the split demands in which the splittee is
V alC, V alP , or a member of 〈β-var〉.

create initial model
analyze program with model
while there is time left

set demand pool to initial demands
make the set of modifying demands empty
repeat

monitor call sites (l,k) that are marked
while there is time left and

there are new demands in the pool do
pick a new demand D in the pool
if D is a modifying demand then

insert D in the modifying demands set
else

process D
add the returned demands to the pool

until there is no time left or
there are no call sites to monitor

if modifying demands set empty then
exit

else
pick the best modifying demand D
modify model with D
re-analyze program with new model

Figure 13. Main demand-driven analysis algorithm

The initial demands are those that we obtain by responding to the
needs of the optimizer and not by demand processing. That is, if
non-closures may be called or non-pairs may go through a strictly
“pairwise” operation, bound demands asking a demonstration that
these violations do not really occur are generated. More precisely,
for a call (lel′ el′′) and for k∈Cont , if αl′,k 
⊆ V alC, then the initial

demand show αl′,k ⊆ V alC is generated. And for a pair-access
expression (carl el′) or (cdrl el′) and for k ∈ Cont , if αl′,k 
⊆

V alP , then the initial demand show αl′,k ⊆ V alP is generated.

The criterion used to select a good model-updating demand in our
implementation is described in Section 6.

The analysis/model-update cycle continues until there is no more
time left or no model updates have been proposed in the model-
update phase. Indeed, it is the user of a compiler including our
demand-driven analysis who determines the bound on the compu-
tational effort invested in the analysis of the program. The time is
not necessarily wall clock time. It may be any measure. In our
implementation, a unit of time allows the algorithm to process a
demand. Two reasons may cause the algorithm to stop by lack of
model-updating demands. One is that there are no more initial de-
mands. That means that all the run time type checks of the program
have been shown to be redundant. The other is that there remain
initial demands but the current analysis results are mixed in such a
way that the demand processing does not lead to the generation of
a model-updating demand.

5.3 Demand Processing

5.3.1 Show In Demands

Now, let us present the processing of demands. We begin with the
processing of show 〈α-var〉 ⊆ 〈bound〉 demands. Let us consider
the demand show αl,k ⊆ B. There are 3 cases. First case, if the val-
ues in αl,k all lie inside of the bound B, then the demand is trivially
successful. Nothing has to be done in order to obtain the desired
demonstration.
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if αl,k ⊆ B:

⇒ (SUCCESS)

Second case, if the values in αl,k all lie outside of the bound B, then
it must be shown that the expression el does not get evaluated in
the abstract contour k. This is a sufficient and necessary condition
because, if el is evaluated in contour k, any value it returns is outside
of the bound, causing the original demand to fail. And if el does not
get evaluated in contour k, then we can conclude that any value in
αl,k lies inside the bound.

if αl,k ∩B = /0:

⇒ show δl,k = /0

Last case, some values in αl,k lie inside of B and some do not.
The only sensible thing to do is to first split the contour k into sub-
contours in such a way that it becomes clear whether the values all
lie inside of B or they all lie outside of B. Since the bounds are all
simple, splitting on the type of the objects is sufficient. Once (we
would better say “if”) the split demand is successful, the original
demand can be processed again.

otherwise:
⇒ split αl,k ⋆

5.3.2 Show Empty Demands

We continue with the processing of show 〈δ-var〉= /0 demands. Let
us consider the demand show δl,k = /0. There are many cases in
its processing. First, if the variable δl,k is already empty, then the
demand is trivially successful.

if δl,k = /0:

⇒ (SUCCESS)

Otherwise, the fact that el does get evaluated or not in contour k
depends a lot on its parent expression, if it has one at all. If it does
not have a parent expression, it means that el is the main expression
of the program and, consequently, there is no possibility to prove
that el does not get evaluated in contour k.8

if el is the main expression:
⇒ (FAILURE)

In case el does have a parent expression, let el′ be that expression.
Let us consider the case where el′ is a λ-expression. It implies that
el is the body of el′ . Note that the evaluation of el in contour k has
no direct connection with the evaluation of el′ in contour k. In fact,
el gets evaluated in contour k if a closure c, resulting from the eval-
uation of el′ in some contour, gets called somewhere (at expression
el′′ ) in some (other) contour k′ on a certain argument v in such a
way that the resulting contour call(l′′,c,v,k′) in which the body of
c must be evaluated is k. So the processing of the demand consists
in emitting a bad call demand for each such abstract call. Note how
the log matrices κ and χ are used to recover the circumstances under
which the contours and closures were created.

8In fact, it is a little more complicated than that. We suppose
here that the abstract variables contain the minimal solution for
the evaluation constraints generated by the analysis framework. In
these conditions, for l being the label of the program main expres-
sion, δl,k is non-empty if and only if k is the main abstract contour.

For any other contour k′, δl,k′ = /0.

if el′ = (λl′x. el):

⇒

{

bad-call l ′′ c v k′ (l′′,c,v,k′) ∈ κk ∧
∃k′′ ∈ Cont . (l′,k′′) ∈ χc

}

Now, let us consider the case where el′ is a conditional. A condi-
tional has three sub-expressions, so we first consider the case where
el is the then-branch of el′ . Clearly, it is sufficient to show that el′

is not evaluated at all in contour k. However, such a requirement is
abusive. The sufficient and necessary condition for a then-branch
to be evaluated (or not to be evaluated) is for the test to return (not
to return, resp.) some true values.

if el′ = (ifl′ el′′ el el′′′):
⇒ show αl′′,k ⊆ V alB

The case where el is the else-branch of the conditional is analogous.
The else-branch cannot get evaluated if the test always returns true
values.

if el′ = (ifl′ el′′ el′′′ el):
⇒ show αl′′,k ⊆ V alT rues

The case where el is the test of the conditional can be treated as a
default case. The default case concerns all situations not explicitly
treated above. In the default case, to prove that el does not get
evaluated in contour k requires a demonstration that el′ does not get
evaluated in contour k either. This is obvious since the evaluation
of a call, cons, car, cdr, or pair? expression necessarily involves
the evaluation of all its sub-expressions. Similarly for the test sub-
expression in a conditional.

otherwise:
⇒ show δl′,k = /0

5.3.3 Bad Call Demands

We next describe how the bad call demands are processed. Let
us consider this demand: bad-call l f v k. The expression el is
necessarily a call and let el = (lel′ el′′). There are two cases: either
the specified call does not occur, or it does. If the call does not
occur, then the demand is trivially successful.9

if f 
∈ αl′,k or v 
∈ αl′′,k:

⇒ (SUCCESS)

In the other case, the specified call is noted into the bad call log.
Another note is kept in order to later take care of all the bad calls
at el in contour k. We call this operation monitoring el in contour
k. More than one bad call may concern the same expression and
the same contour. Because the monitoring is a crucial operation, it
should have access to bad call informations that are as accurate as
possible. So, it is preferable to postpone the monitoring as much as
possible.

otherwise:
⇒ Insert (l, f ,v,k) in the bad call log.

Flag (l,k) as a candidate for monitoring.

9Actually, in the current implementation, this case cannot occur.
The demand is generated precisely because the specified call was
found in the κ matrix. However, previous implementations differed
in the way demands were generated and bad call demands could be
emitted that were later proved to be trivially successful.
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5.3.4 Split Demands

Direct Model Split

Let us now present the processing of the split demands. The pro-
cessing differs considerably depending on the splittee. We start by
describing the processing of the following demands: split V alC P
and split V alP P. These are easy to process because they explicitly
prescribe a modification to the abstract model. The modification
can always be accomplished successfully.

⇒ Update Mv with P
(SUCCESS)

Split α-variables

The most involving part of the demand processing is the processing
of the split 〈α-var〉 〈sPat〉 demands. Such a demand asks for a
splitting of the value of an expression in a certain contour, so that
there is no more spreading of the values on the specified pattern. Let
us consider the demand split αl,k P. The first possibility is that there
is actually no spreading. Then the demand is trivially successful.

if ¬ (αl,k րցւտ P):
⇒ (SUCCESS)

However, if there is spreading, then expression el has to be in-
spected, as the nature of the computations for the different expres-
sions vary greatly. Let us examine each kind of expression, one by
one. First, we consider the false constant. Note that this expres-
sion can only evaluate to #f. So its value cannot be spread on P, no
matter which split pattern P is. For completeness, we mention the
processing of the demand nevertheless.

if el = #fl :
⇒ (SUCCESS)

Second, el may be a variable reference. Processing this demand is
straightforward and it translates into a split demand onto a 〈β-var〉.

if el = xl :
⇒ split βx,k,l P

Third, el may be a call. Clearly, this case is the most difficult to
deal with. This is because of the way a call expression is abstractly
evaluated. Potentially many closures are present in the caller posi-
tion and many values are present in the argument position. It fol-
lows that a Cartesian product of all possible invocations must be
done. In turn, each invocation produces a set that potentially con-
tains many return values. So, in order to succeed with the split,
each set of return values that is spread on the pattern must be split.
And the sub-expressions of the call must be split in such a way that
no invocation producing non-spread return values can occur in the
same contour than another invocation producing incompatible non-
spread return values. This second task is done with the help of the
function SC (Split Couples) that prescribes split patterns that sepa-
rate all the incompatible couples. An example follows the formal
description of the processing of the split demand on a call.

if el = (lel′ el′′):

⇒











split γc,k′ P c ∈ αl′,k ∩V alC ∧
v ∈ αl′′ ,k ∧
k′ = call(l,c,v,k) ∧
γc,k′ րցւտ P











∪
{

split αl′,k P1 P1 ∈ B
}

∪
{

split αl′′ ,k P2 P2 ∈C
}

where A =











((c,v),γc,k′) c ∈ αl′,k ∩V alC ∧
v ∈ αl′′,k ∧
k′ = call(l,c,v,k) ∧
¬ (γc,k′ րցւտ P)











(B,C) = SC(A,P)

The following example illustrates the processing of the demand.
Suppose that we want to process the demand split αl,k ⋆; that two
closures may result from the evaluation of el′ , say, αl′,k = {c1,c2};
and that two values may be passed as arguments, say, αl′′,k =
{v1,v2}. Define ki j, for i, j ∈ {1,2}, as call(l,ci,v j,k). Also sup-
pose that

¬ (γc1,k11
րցւտ ⋆), γc1,k12

րցւտ ⋆,

γc2,k21
րցւտ ⋆, and ¬ (γc2,k22

րցւտ ⋆),

that γc1,k11
⊆ V alB , and that γc2,k22

⊆ V alP . Closure c1, when
called on v2, and closure c2, when called on v1, both return values
that are spread on ⋆. It follows that their return values in those
circumstances must be split. So, γc1,k12

and γc2,k21
must be split by

the pattern ⋆. It is necessary for these two splits to succeed in order
to make our original demand succeed. It is not sufficient, however.
We cannot allow c1 to be called on v1 and c2 to be called on v2

under the same contour k. It is because the union of their return
values is spread on ⋆. They are incompatible. This is where the SC

function comes into play and its use:

SC({((c1,v1),γc1,k11
),((c2,v2),γc2,k22

)},⋆)

returns either ({λ⋆}, /0) or ( /0,{⋆}). In either case, a split according
to the prescribed pattern, if successful, would make the two incom-
patible calls occur in different contours. If we suppose that the first
case happens, the result of processing the original demand is:

⇒ split γc1,k12
⋆

split γc2,k21
⋆

split αl′,k λ⋆

Fourth, el may be a λ-expression. The processing of this demand is
simple as it reduces to a split on the abstract model of closures.

if el = (λlx. el′):
⇒ split V alC P

Fifth, let us consider the case where el is a conditional. Two cases
are possible: the first case is that at least one of the branches is
spread on the pattern; the second is that each branch causes no
spreading on the pattern but they are incompatible and the test sub-
expression evaluates to both true and false values. In the first case,
a conservative approach consists in splitting the branches that cause
the spreading.

if el = (ifl el′ el′′ el′′′) ∧ (αl′′,k րցւտ P ∨ αl′′′,k րցւտ P):

⇒
{

split αl(n),k P l(n) ∈ {l′′, l′′′} ∧ αl(n),k րցւտ P
}

In the second case, it is sufficient to split on the type of the test
sub-expression, as determining the type of the test sub-expression
allows one to determine which of the two branches is taken and
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consequently knowing that the value of the conditional is equal to
one of the two branches.

if el = (ifl el′ el′′ el′′′):
⇒ split αl′,k ⋆

Sixth, our expression el may be a pair construction. The fact that
the value of el is spread on the pattern implies first that the pattern
has the form (P′, P′′) and second that the value of one of the two
sub-expressions of el is spread on its corresponding sub-pattern (P′

or P′′). In either case, the demand is processed by splitting the
appropriate sub-expression by the appropriate sub-pattern.

if el = (consl el′ el′′) ∧ P = (P′, P′′) ∧ P′ ∈ 〈sPat〉:
⇒ split αl′,k P′

if el = (consl el′ el′′) ∧ P = (P′, P′′):
⇒ split αl′′,k P′′

Seventh, el may be a car-expression. In order to split the value
of el on P, the sub-expression has to be split on (P, ∀). However,
there is the possibility that the abstract model of the pairs is not
precise enough to abstract the pairs up the level of details required
by (P, ∀). If not, the model of the pairs has to be split first. If it is,
the split on the sub-expression can proceed as planned.

if el = (carl el′) ∧ V alP is precise enough for (P, ∀):
⇒ split αl′,k (P, ∀)

if el = (carl el′):
⇒ split V alP (P, ∀)

Eighth, if el is a cdr-expression, the processing is similar to that of
a car-expression.

if el = (cdrl el′) ∧ V alP is precise enough for (∀, P):
⇒ split αl′,k (∀, P)

if el = (cdrl el′):
⇒ split V alP (∀, P)

Ninth, el must be a pair?-expression. Processing the demand sim-
ply consists in doing the same split on the sub-expression. To
see why, it is important to recall that, if this case is currently be-
ing considered, it is because αl,k րցւտ P. If P = ⋆, the type of the
sub-expression must be found in order to find the type of the ex-
pression. If P = (P′, P′′), the same split is required on the sub-
expression since all the pairs of the pair?-expression come from its
sub-expression. P cannot be λ⋆ or λl′′ k′, for l′′ ∈ Lab, k′ ∈ 〈mkPat〉,
because el can only evaluate to Booleans and pairs.

otherwise el = (pair?l el′):
⇒ split αl′,k P

Split β-variables

The next kind of split demands have a 〈β-var〉 as a splittee. Re-
call that a 〈β-var〉 indicates the name of a program variable and the
label and contour where a reference to that variable occurs. Let
us consider this particular demand: split βx,k,l P. Recall also that
the contour k is a modeling contour pattern which consists in a list
of modeling patterns, one per variable in the lexical environment
visible from the expression el . Each modeling pattern represents a
kind of bound in which the value of the corresponding is guaran-

teed to lie. The first modeling pattern corresponds to the innermost
variable. The last corresponds to the outermost.

Note that the analysis framework does not compute the value of
variable references using these bounds. As far as the framework is
concerned, the whole contour is just a name for a particular eval-
uation context. In the framework, a reference to a variable x is
computed by either inspecting the abstract variable βx,k if x is the
innermost variable or by translating it into a reference to x from the
label l′ of the λ-expression immediately surrounding el and contour
k′ in which λ-expression el′ got evaluated, creating a closure that
later got invoked, leading to the evaluation of its body in contour
k. For the details on variable references in the analysis framework,
see [4]. Nonetheless, because of the way we implement the abstract
model, a reference to a variable x from a label l, and in a contour k
always produces values that lie inside of the bound corresponding
to x in k.

Consequently, a split on a program variable involves a certain num-
ber of splits on the abstract models of call and cc. Moreover, con-
sistency between abstract values also prescribes multiple splits on
the abstract model. For example, if contour k results from the call
of closure λl′ k′ on a value v at label l′′, and in contour k′′, that is,
k = call(l′′,λl′ k′,v,k′′), then contour k cannot be more precise than
k′ about the program variable bounds it shares with contour k′. In
turn, if closure λl′ k′ results from the evaluation of el′ in contour k′′′,
that is, λl′ k′ = cc(l ′,k′′′), then contour k′ cannot be more precise
than k′′′ about the program variable bounds it shares with contour
k′′′. It follows that a split on a program variable, which can be seen
as a refining of its bound in the local contour, requires the refin-
ing of a chain of contours and closure environments until a point is
reached where the contour to refine does not share the variable with
the closure leading to its creation.

Now, if we come back to the processing of split βx,k,l P, the first
thing that must be verified is whether a reference to x from el in
contour k produces values that are spread on pattern P. We denote
such a variable reference by ref(x,k, l). If no spreading occurs,10

the demand is trivially successful, otherwise modifications to the
model must be done.

if ¬ (ref(x,k, l) րցւտ P):
⇒ (SUCCESS)

otherwise:
⇒ Update Mlm with (P′

m Pm−1 . . . P0)
Update Mv with λlm+1

(P′
m Pm−1 . . . P0)

Update Mlm+1
with (Pm+1 P′

m Pm−1 . . . P0)
...

Update Mv with λln (Pn−1 . . . Pm+1 P′
m Pm−1 . . . P0)

Update Mln with (Pn . . . Pm+1 P′
m Pm−1 . . . P0)

where
(λlm x. . . .(λlm+1

ym+1. . . .(λln yn. . . .xl . . .) . . .) . . .)

is the λ-expression binding x
k = (Pn . . . Pm+1 Pm Pm−1 . . . P0)
P′

m = Pm ∩P

Split γ-variables

The last kind of demands is the split demand with a 〈γ-var〉 as a
splittee. The processing of such a demand is straightforward since

10Once again, this case cannot occur in the current implementa-
tion.
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the return value of a closure is the result of the evaluation of its
body. Let us consider this particular demand: split γc,k P. In case
the return value is not spread on the pattern, the demand in trivially
successful.

if ¬ (γc,k րցւտ P):
⇒ (SUCCESS)

otherwise:
⇒ split αl′,k P

where c = λl k′ ∧ el = (λlx. el′)

5.3.5 Call Site Monitoring

The processing rules have been given for all the demands. However,
we add here the description of the monitoring of call sites. The
monitoring of call sites is pretty similar to the processing of the
demand split αl,k P where el is a call. The difference comes from
the fact that, with the monitoring, effort is made in order to prove
that the bad calls do not occur. Let us consider the monitoring of
call expression (lel′ el′′) in contour k. Let LBC denote the bad call
log. Potentially many closures may result from the evaluation of el′

and potentially many values may result from the evaluation of el′′ .
Among all the possible closure-argument pairs, a certain number
may be marked as bad in the bad call log and the others not. If
no pair is marked as bad, then the monitoring of el in k is trivially
successful.

if
(

(αl′,k ∩V alC)×αl′′ ,k

)

∩LBC(l,k) = /0:

⇒ (SUCCESS)

On the contrary, if all the pairs are marked as bad calls, then a de-
mand is emitted asking to show that the call does not get evaluated
at all.

if
(

(αl′,k ∩V alC)×αl′′ ,k

)

⊆ LBC(l,k):
⇒ show δl,k = /0

But in the general case, there are marked pairs and non-marked
pairs occurring at the call site. It is tempting to emit a demand D
asking a proof that the call does not get evaluated at all. It would
be simple but it would not be a good idea. The non-marked pairs
may abstract actual computations in the concrete evaluation of the
program and, consequently, there would be no hope of ever making
D successful.11 What has to be done is to separate, using splits, the
pairs that are marked and the pairs that are not. The (overloaded)
SC function is used once again.

otherwise:
⇒

{

split αl′,k P1 | P1 ∈ A
}

∪
{

split αl′′,k P2 | P2 ∈ B
}

where A = (αl′,k ∩V alC)×αl′′ ,k

(B,C) = SC(A,LBC(l,k))

5.3.6 The Split Couples Function

We conclude this section with a short description of the SC function.
SC is used for two different tasks: splitting closure-argument pairs

11This is because an analysis done using the framework is con-
servative (see [4]). That is, the computations made in the abstract
interpretation abstract at least all the computations made in the con-
crete interpretation. So, it is impossible to prove that an abstract
invocation does not occur if it has a concrete counterpart occurring
in the concrete interpretation.

according to the bucket in which the return values fall relatively to
a split pattern P; splitting closure-argument pairs depending on the
criterion that they are considered bad calls or not. In fact, those two
tasks are very similar. In both cases, the set of pairs is partitioned
into equivalence classes that are given either by the split pattern
bucket or by the badness of the call. In order to separate two pairs
(v1, v2) and (w1, w2) belonging to different classes, it is sufficient
to provide a split that separates v1 from w1 or a split that separates
v2 from w2. So, what SC has to do is to prescribe a set of splits
to perform only on the first component of the pairs and another
set of splits to perform only on the second component such that
any two pairs from different classes would be separated. This is
clearly possible since prescribing splits intended to separate any
first component from any other is a simple task. Similarly for the
second components. This way, any pair would be separated from
all the others. Doing so would be overly aggressive, however, as
there are usually much smaller sets of splits that are sufficient to
separate the pairs.

Our implementation of SC proceeds this way. It first computes the
equivalence classes. Next, each pair is converted into a genuine
abstract pair (a modeling pattern). Then, by doing a breadth-first
traversal of all the pairs simultaneously, splitting strategies are elab-
orated and compared. At the end, the strategy requiring the smallest
number of splits is obtained. Being as little aggressive as possible
is important because each of the proposed splits will have to be ap-
plied on one of the two sub-expressions of a call expression. And
these sub-expressions may be themselves expressions that are hard
to split (such as calls).

6 Experimental Results

6.1 Current Implementation

Our current implementation of the demand-driven analysis is mere-
ly a prototype written in Scheme to experiment with the analysis
approach. No effort has been put into making it fast or space-
efficient. For instance, abstract values are implemented with lists
and symbols and closely resemble the syntax we gave for the mod-
eling patterns. Each re-analysis phase uses these data without con-
verting them into numbers nor into bit-vectors. And a projection
using the pattern-matchers is done for each use of the cc, pc, and
call functions.

Aside from the way demands are processed, many variants of the
main algorithm have been tried. The variant that we present in Sec-
tion 5 is the first method that provided interesting results. Previ-
ous variants were trying to be more clever by doing model changes
concurrently with demand processing. This lead to many compli-
cations: demands could contain values and contours expressed in
terms of an older model; a re-analysis was periodically done but
not necessarily following each model update, which caused some
demands to not see the benefits of a split on the model that had
just been done; a complex system of success and failure propaga-
tion, sequencing of processing, and periodic processing resuming
was necessary; etc. The strength of the current variant is that, after
each model update, a re-analysis is done and the whole demand-
propagation is restarted from scratch, greatly benefitting from the
new analysis results.

In the current variant, we tried different approaches in the way the
best model-updating demand is selected to be applied on the model.
At first, we applied all the model-updating demands that were pro-
posed by the demand processing phase. This lead to exaggerate
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Figure 14. Source of the map-hard benchmark

refining of the model, leading to massive space use. So we decided
to make a selection of one of the demands according to a certain
criterion. The first criterion was to measure how much the abstract
model increases in size if a particular demand is selected. While
it helped in controlling the increase in size of the model, it was
not choosing very wisely as for obtaining very informative analysis
results. That is, the new results were expressed with finer values
but the knowledge about the program data flow was not always in-
creased. Moreover, it did not necessarily help in controlling the
increase in size of the analysis results. The second criterion, which
we use now, measures how much the abstract model plus the analy-
sis results increase in size. This criterion really makes a difference,
although the demand selection step involves re-analyzing the pro-
gram for all candidate demands.

6.2 Benchmarks

We experimented with a few small benchmark programs. Most of
the benchmarks involve numeric computations using naturals. Two
important remarks must be made. First, our mini-language does
not include letrec-expressions. This means that recursive func-
tions must be created using the Y combinator. Note that we wrote
our benchmarks in an extended language with let- and letrec-
expressions, and used a translator to reduce them into the base lan-
guage. We included two kinds of letrec translations: one in which
Y is defined once globally and all recursive functions are created
using it; one in which a private Y combinator is generated for each
letrec-expression. The first kind of translation really makes the
programs more intricate as all recursive functions are closures cre-
ated by Y. The second kind of translation loosely corresponds to
making the analysis able to handle letrec-expressions as a special
form. We made tests using both translation modes. Our second re-
mark concerns numbers. Our mini-language does not include inte-
gers. Another translation step replaces integers and simple numeric
operators by lists of Booleans and functions, respectively. Thus, in-
tegers are represented in unary as Peano numbers and operations on
the numbers proceed accordingly. This adds another level of diffi-
culty on top of the letrec-expression translation. For an example
of translation, see Appendix A.

Our benchmarks are the following. Cdr-safe contains the defini-
tion of a function which checks its argument to verify that it is a pair
before doing the access. It can be analyzed perfectly well by a 1-cfa,
but not by a 0-cfa. Loop is an infinite loop. 2-1 computes the value
of (- 2 1). Map-easy uses the ‘map’ function on a short list of
pairs using two different operators. Map-hard repetitively uses the
‘map’ function on two different lists using two different operators.
The lists that are passed are growing longer and longer. This use of

‘map’ is mentioned in [7] as being impossible to analyze perfectly
well by any k-cfa. The source code of this benchmark is shown in
Figure 14. Fib, gcd, tak, and ack are classical numerical computa-
tions. N-queens counts the number of solutions for 4 queens. SKI
is an interpreter of expressions written with the well known S, K,
and I combinators. The interpreter runs an SKI program doing an
infinite loop. The combinators and the calls are encoded using pairs
and Booleans.

6.3 Results

Figure 15 presents the results of running our analysis on the bench-
marks. Each benchmark was analyzed when reduced with each
translation method (global and private Y). A time limit of 10000
“work units” has been allowed for the analysis of each bench-
mark. The machine running the benchmarks is a PC with a 1.2 GHz
Athlon CPU, 1 GByte RAM, and running RH Linux kernel 2.4.2.
Gambit-C 4.0 was used to compile the demand-driven analysis.

The column labeled “Y” indicates whether the Y combinator is
Global or Private. The next column indicates the size of the trans-
lated benchmark in terms of the number of basic expressions. The
columns labeled “total”, “pre”, “during”, and “post” indicate the
number of run time type checks still required in the program at
those moments, respectively: before any analysis is done, after
the analysis with the initial model is done, during, and after the
demand-driven analysis. Finally, the computation effort invested in
the analysis is measured both in terms of work units and CPU time.

The measure in column “total” is a purely syntactic one, it basi-
cally counts the number of call-, car-, and cdr-expressions in the
program. The measure in “pre” is useful as a comparison between
the 0-cfa and our analysis. Indeed, the initial abstract model used in
our approach is quite similar to that implicitly used in the 0-cfa. An
entry like 2@23 in column “during” indicates that 2 run time type
checks are still required after having invested 23 work units in the
demand-driven analysis (this gives an idea of the convergence rate
of the analysis).

When we look at Figure 15, the aspect of the results that is the
most striking is the small improvements that the full demand-driven
analysis obtains over the results obtained by the 0-cfa. Two reasons
explain this fact. First, many run time type checks are completely
trivial to remove. For instance, every let-expression, once trans-
lated, introduces an expression of the form ((λx. . . .) . . .). In turn,
the translation of each letrec-expression introduces 2 or 3 let-
expressions, depending on the translation method. It is so easy to
optimize such an expression that even a purely syntactic detection
would suffice. Second, type checks are not all equally difficult to
remove. The checks that are removed by the 0-cfa are removed be-
cause it is “easy” to do so. The additional checks that are removed
by the demand-driven phase are more difficult ones. In fact, the dif-
ficulty of the type checks seems to grow very rapidly as we come
close to the 100% mark. This statement is supported by the numbers
presented in [2] where a linear-time analysis, the sub-0-cfa, obtains
analysis results that are almost as useful to the optimizer than those
from the 0-cfa, despite its patent negligence in the manipulation of
the abstract values.

Note how translating with a private Y per letrec helps both the
0-cfa and the demand-driven analysis. In fact, except for the
n-queens benchmark, the demand-driven analysis is able to re-
move all type checks when private Y combinators are used. The
success of the analysis varies considerably between benchmarks.
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Y size total pre during post units time(s)

cdr-safe G 17 4 1 0 5 0.02
P 17 4 1 0 5 0.02

loop G 32 11 0 0 1 0.02
P 26 9 0 0 1 0.02

2-1 G 48 15 2 1@7 0 47 0.30
P 42 13 2 1@7 0 48 0.26

map-easy G 82 26 6 4@19 0 134 1.95
P 76 24 6 4@19 0 134 1.76

map-hard G 96 33 9 6@38 5@254 3@305 1@520 0 1399 76.26
P 101 35 4 2@118 0 284 5.22

fib G 141 40 12 12 10000 1480.57
P 168 50 5 4@16 3@29 2@39 1@46 0 358 8.77

gcd G 257 77 8 7@25 6@47 5@66 4@82 3@95 2@105 1@112 1 10000 7958.30
P 328 103 6 5@19 4@35 3@48 2@58 1@65 0 8509 1088.58

tak G 202 46 9 9 10000 1996.30
P 218 52 4 3@13 2@23 1@30 0 240 11.63

n-queens G 372 121 51 51 10000 15899.39
P 454 151 11 10@34 9@65 8@93 7@118 6@140 5@1750 5 10000 1816.00

ack G 162 49 5 4@16 3@29 2@39 1@46 1 10000 3948.32
P 189 59 3 2@10 1@17 0 200 7.97

SKI G 285 46 19 15@91 13@173 11@323 9@397 4 10000 841.13
7@473 6@543 5@1474 4@3584

P 290 48 17 13@52 11@98 9@138 8@212 0 899 64.37
5@249 4@358 3@567 1@673

Figure 15. Experimental results

unrolling 1 2 4 8 16
units 176 280 532 1276 3724
time(s) 6.77 15.53 51.76 248.59 1592.93

Figure 16. The effect of the size of a program on the analysis
work

Moreover, it is not closely related to the size of the program. It
is more influenced by the style of the code. In order to evaluate
the performance of the analysis on similar programs, we conducted
experiments on a family of such programs. We modified the ack
benchmark by unrolling the recursion a certain number of times.
Translation with private Y is used. Figure 16 shows the results for
a range of unrolling levels. For each unrolling level i, the total
number of type checks in the resulting program is 43 + 19i if no
optimization is done, 3 checks are still required after the program
is analyzed with the initial model, and all the checks are eliminated
when the demand-driven analysis finishes. We observe a somewhat
quadratic increase in the analysis times. This is certainly better than
the exponential behavior expected for a type analysis using lexical-
environment contours.

7 Conclusions

The type analysis presented in this paper produces high quality
results through the use of an adaptable abstract model. During
the analysis, the abstract model can be updated in response to the
specifics of the program while considering the needs of the opti-
mizer. This adaptivity is obtained by the processing of demands
that express, directly or indirectly, the needs of the optimizer. That
is, the model updates are demand-driven by the optimizer. More-
over, the processing rules for the demands make our approach more
robust to differences in coding style.

The approach includes a flexible analysis framework that generates
analyses when provided with modeling parameters. We proposed
a modeling of the data that is based on patterns and described a

method to automatically compute useful modifications on the ab-
stract model. We gave a set of demands and processing rules for
them to compute useful model updates. Finally, we demonstrated
the power of the approach with some experiments, showing that it
analyzes precisely (and in relatively short time) a program that is
known to be impossible to analyze with the k-cfa. A complete pre-
sentation of our contribution can be found in [3]. An in-depth pre-
sentation of all the concepts and algorithms along with the proofs
behind the most important theoretical results are also found there.

Except for the ideas of abstract interpretation and flexible analyses,
the remainder of the presented work is, to the best of our knowl-
edge, original. Abstract interpretation is frequently used in the field
of static analysis (see [2, 7, 8, 9]). The k-cfa family of analyses
(see [8, 9]) can, to some extent, be considered as flexible. The
configurable analysis presented in [2] by Ashley and Dybvig can
produce an extended family of analyses, but at compiler implemen-
tation time. Our analysis framework (see [4]) allows for more sub-
tlety and can be modified during the analysis.

We can think of many ways to continue research on this subject: ex-
tended experiments on our approach in comparison to many other
analyses; the speed and memory consumption of the analysis; in-
cremental re-analysis (that is, if analysis results R1 were obtained
by using model M1, and model M2 is a refinement of model M1,
then compute new results R2 efficiently), better selection of the
model-updating demands. Moreover, language extensions should
be considered to handle a larger part of Scheme and extending our
demand-driven approach to other analyses. There are also more
theoretical questions. We know that analyzing with the analysis
framework and adequate modeling parameters is always at least as
powerful as the k-cfa (or many other analyses). However, it requires
the parameters to be given by an oracle. What we do not know is
whether our current demand-driven approach is always at least as
powerful as the k-cfa family. We think it is not, but do not yet have
a proof.
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Figure 17. The ack benchmark, before expansion
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Figure 18. The ack benchmark, after expansion

Other researchers have worked on demand-driven analysis but in a
substantially different way (see the work of Duesterwald et al. [5],
Agrawal [1], and Heintze and Tardieu [6]). These approaches do
not have an abstract execution model that changes to suit the pro-
gram. Their goal is to adapt well-known analysis algorithms into
variants with which one can perform what amounts to a lazy evalu-
ation of the analysis results.
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Montréal, 2002. Available at:
http://www.iro.umontreal.ca/˜dube.
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A Translation of a Benchmark

In Section 6, we mention that letrec-expressions and numerical
operations in the benchmarks have to be translated into the base
language. We illustrate this process using the ack benchmark. Fig-
ure 17 shows the source code of the benchmark and Figure 18 shows
the program after translation. Note that numbers have been replaced
by cons-expressions and that the necessary arithmetic operators
have been introduced as functions. Also note that the Y combi-
nator is bound first and that the recursive functions (‘ack’ and three
arithmetic operators) are created using it.
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