
Compiling for Multi-language Task Migration

Marc Feeley
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Abstract
Task migration allows a running program to continue its ex-
ecution in a different destination environment. Increasingly,
execution environments are defined by combinations of cul-
tural and technological constraints, affecting the choice of
host language, libraries and tools. A compiler supporting
multiple target environments and task migration must be
able to marshal continuations and then unmarshal and con-
tinue their execution, ideally, even if the language of the des-
tination environment is different. In this paper, we propose a
compilation approach based on a virtual machine that strikes
a balance between implementation portability and efficiency.
We explain its implementation within a Scheme compiler
targeting JavaScript, PHP, Python, Ruby and Java – some of
the most popular host languages for web applications. As our
experiments show, this approach compares well with other
Scheme compilers targeting high-level languages in terms
of execution speed, being sometimes up to 3 orders of mag-
nitude faster.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – Compilers

Keywords Task migration, continuation, tail call, mar-
shalling, Scheme, JavaScript, trampoline, virtual machine

1. Introduction
High-level programming languages are increasingly being
used as targets for compiling other source languages [1, 3,
11]. Some of the more popular target languages are C, Java
and JavaScript. Such an approach gives increased portability,
allowing the source language to execute wherever the target
language can be executed, it gives access to the features
available in the target language (libraries, tools, etc), and

it simplifies integrating program parts written in the source
language with an existing code base in the target language.

Compilers supporting multiple target languages are at-
tractive when the same software must execute in multiple
environments where specific host programming languages
are a requirement for technological or cultural reasons (for
example JavaScript in a web browser and PHP in a web
server). Implementing a multi-target compiler for a dis-
tributed programming language supporting task migration,
such as CmPS [13], Kali [4] and Termite Scheme [10],
places extra constraints on the compilation approach.

As an example using Termite Scheme, consider a task
running on a web browser that wants to migrate to a desig-
nated destination web browser on a different computer. This
could be achieved by migrating the task to the web server
and then migrating the task again to the destination web
browser connected to that web server. In Termite Scheme
these steps can be expressed concisely with the following
function definition:
(define (migrate-to-other-browser destination)
(migrate-task web-server)
(migrate-task destination))

The migrate-task function is defined by the Termite
Scheme runtime system as follows:
(define (migrate-task node)
(call/cc (lambda (k)

(remote-spawn node (lambda () (k #t)))
(halt!))))

The call to remote-spawn sends its second argument,
a closure containing k, the continuation of the call to
migrate-task, to the destination computational node (the
web server or destination web browser) where a thread is
started which calls the closure, thus resuming at the desti-
nation the computation following the call to migrate-task

(the continuation k). The thread at the source node is termi-
nated by the call to halt!.

Consequently, for implementing this task migration ap-
proach, it must be possible to capture a running compu-
tational task’s continuation, marshal it and then unmarshal
and continue its execution, ideally, regardless of the desti-
nation environment’s host language. This would allow, for
example, the migration of a running task between a web
browser (hosted on JavaScript) and a web server (say hosted
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on PHP). This paper proposes a compilation approach that
supports task migration between the target languages of a
Scheme [14, 19] compiler supporting Termite Scheme [10].

Using dynamic languages such as JavaScript and PHP
as target languages for a Scheme compiler is alluring be-
cause they offer dynamic typing, introspective features, clo-
sures and garbage collection that simplify the translation of
Scheme. The biggest challenge remaining is the implemen-
tation of tail calls and first-class continuations, which have
no direct equivalent in general in these target languages.

Scheme systems conforming to the standard must imple-
ment tail calls without stack growth. Contrary to most other
languages, in Scheme this behavior is a requirement, not an
optional optimization. A Scheme system must also imple-
ment the call/cc primitive which captures implicit contin-
uations so that they can be invoked explicitly, possibly mul-
tiple times. Because of the complexity and run-time cost of
implementing these features in a high-level target language,
some systems reduce their generality by default (for exam-
ple, only transforming self tail calls by using loops, and one-
shot escape continuations by using exceptions), and support
the full generality only through special compilation options.

Various approaches for implementing these features in
their full generality have been used in Scheme compil-
ers targeting high-level languages such as the Bigloo [18],
Chicken [21] and Gambit-C [8] Scheme to C compilers, and
the Scheme2JS [15–17], Spock [20], and Whalesong [22]
Scheme to JavaScript compilers.

Tail calls can be implemented with trampolines to avoid
stack growth when one function jumps to another function.
Trampolines are used in Scheme2JS and Gambit-C.

The approach used by Chicken, Spock, and Whalesong,
known as Cheney on the MTA [2], implements tail calls with
normal calls and uses a non-local escape mechanism, such as
throw/catch or C’s setjmp/longjmp, at appropriate mo-
ments to reclaim the useless stack frames in bulk. By using
a CPS conversion of the code, the Cheney on the MTA ap-
proach makes it possible to reclaim all stack frames because
all calls are tail calls in the CPS’ed code. The implementa-
tion of first-class continuations is greatly simplified since all
functions receive an explicit continuation function.

In Scheme2JS, first-class continuations are implemented
by copying the stack frames to the heap. In JavaScript, where
the stack can’t be accessed directly, exceptions can be used
to visit the stack frames iteratively (from newest to oldest)
to build a copy in the heap and reclaim the stack frames.
The code generated for functions is structured in such a way
that the original stack frames are recreated by a traversal of
the copy in the heap (in other words functions contain code
to save their frames and also recreate them, depending on
whether a continuation is being captured or invoked). This is
known as the Replay-C algorithm in [16].

Gambit-C uses a virtual machine based representation
of the program. The instructions of this virtual machine

are translated to C in a fairly direct way. The virtual ma-
chine models the stack explicitly as a C array, and con-
sequently could implement first-class continuations with
most of the algorithms used by native code compilers [5]. It
uses a fine grained variant of the Hieb-Dybvig-Bruggeman
strategy [12]. In this paper we use a similar virtual ma-
chine based compilation approach but targeting multiple
languages, specifically Java, JavaScript, PHP, Python and
Ruby, which are popular languages for web development.

These approaches to implementing tail calls and first-
class continuations offer different trade-offs. It is convenient
to consider as a baseline a direct translation of Scheme
to the target language that ignores tail calls and first-class
continuations, and to look at the overhead over the baseline
for a particular approach.

The Cheney on the MTA approach makes first-class con-
tinuation capture and invocation very fast, but it slows down
non-tail calls due to the overhead of creating the closure for
the continuation, passing it to the called function, and the
added pressure on the garbage collector.

Scheme2JS is designed to favor programs with infrequent
first-class continuation operations. The Replay-C algorithm
it uses has more work to do when first-class continuations
are captured and invoked, for copying between the stack and
heap. Programs that seldom capture and invoke continua-
tions still have an overhead for the try/catch forms that
wrap all non-tail calls, but it is possibly less work than cre-
ating and reclaiming continuation closures, which of course
depends on the technology used to implement the target lan-
guage, which has evolved since Scheme2JS’s creation.

Modeling the stack explicitly, as in Gambit-C, also has
an overhead because accesses to source language local vari-
ables are converted, in the general case, to target language ar-
ray indexing operations of the stack, preventing an efficient
assignment of the variables to registers. All the approaches
generate code with a more complex structure than the base-
line. This also causes overhead because optimization by the
target VM is hindered.

In this paper we explore an approach for implement-
ing tail calls and first-class continuations that is based on
a virtual machine and that supports marshalling and unmar-
shalling function closures and continuations. The approach
strikes a good balance between simplicity of implementation
and performance. A performance analysis of the JavaScript
back-end reveals that Gambit generates code that is consis-
tently faster than both Scheme2JS and Spock on the four
JavaScript VMs we have tested, and on some JavaScript
VMs the performance gap is substantial.

2. Gambit Virtual Machine
The Gambit compiler front-end follows a fairly standard or-
ganization as a pipeline of stages that parse the source code
to construct an AST, expand macros, apply various program
transformations on the AST (assignment conversion, lambda
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lifting, inlining, constant folding, etc), translate the AST to
a control flow graph (CFG), and perform additional opti-
mizations on the CFG. The front-end does not perform a
CPS conversion. Finally the target language specific back-
end converts the CFG to the target language.

2.1 Instruction Set
The CFG is a directed graph of basic blocks containing in-
structions of a custom designed virtual machine [9], called
the Gambit Virtual Machine (GVM). The GVM is a sim-
ple machine with a set of locations into which any Scheme
object can be stored: general purpose registers (e.g. r2), a
stack of frames (e.g. frame[2] is the second slot of the top-
most stack frame), and global variables. The front-end will
generate GVM code that respects the back-end specific con-
straints, such as the number of available GVM registers, the
calling convention, and the set of inlinable Scheme primi-
tives. In the current back-ends, there are 5 GVM registers,
and the calling convention passes in registers the return ad-
dress (in r0) and the last 3 arguments (in r1, r2, and r3).
The stack is only used when there are more than 3 argu-
ments. Register r4 is used to implement closures, as ex-
plained below.

There are seven GVM instructions: label, jump, ifjump,
switch, copy, apply, and close. Each basic block begins with
a label instruction that identifies the basic block, gives its
kind, and the frame size of the topmost stack frame. There
are local blocks, used for control flow between blocks of
a function, and first-class blocks, used for control flow
between functions (function entry-point and function call
return-point). References to first-class blocks can be stored
in any GVM location.

The last instruction of a basic block is a branch that trans-
fers control to another basic block unconditionally (jump) or
conditionally (ifjump or switch). Conditional and uncondi-
tional branches can branch to local blocks. Only jump in-
structions can branch to first-class blocks. In general, func-
tion calls are implemented with a jump instruction spec-
ifying the argument count. The label instruction for the
entry-point specifies the function’s number of parameters
and whether or not there is a rest parameter, allowing at
function entry a dynamic check of the argument count and
the creation of the rest parameter. Function calls to known
local functions without a rest parameter avoid the argument
count check (they become jumps without argument count to
local blocks). Scheme’s if and case forms are respectively
implemented using the ifjump and switch instructions that
branch to one of multiple local blocks.

Data movement and primitive operations (e.g. cons) are
respectively performed with the copy and apply instructions.
These instructions specify the destination GVM location,
and the source operands, which can be any GVM location,
immediate Scheme object or reference to a first-class block.
Conceptually, the copy instruction is equivalent to an apply

instruction of the identity function, but they are kept separate
for historical reasons.

Finally, the close instruction creates a group of one or
more flat closures. For each closure is specified the closure’s
entry-point, the values of the closed variables, and the desti-
nation GVM location where the closure reference is stored.
Mutually referential closures, which letrec can create, can
be constructed because the assignment to the destinations
are conceptually performed after the closures are allocated
but before the content of the closure is initialized. A jump to
a closure reference will transfer control to the closure entry-
point contained in the closure and automatically store the
closure reference in the self register, which is the last GVM
register, i.e. r4, in the current back-ends. In the function’s
body, the closed variables are accessed indirectly using the
closure reference.

2.2 Stack Frame Management
The GVM does not expose a stack pointer register, or
push/pop instructions. The allocation of stack frames is spec-
ified implicitly in the label and branch instructions. The
label instruction indicates the topmost frame’s size immedi-
ately after its execution (the fs=n annotation). Similarly, the
branch instruction at the end of the basic block indicates the
frame size at the transfer of control. The difference between
the exiting and entering frame sizes is the amount of stack
space allocated (or deallocated if the difference is negative).
The back-end can generate a single stack pointer adjustment
at every branch instruction. Moreover, the back-end can use
the entering frame size to calculate the offset to add to the
stack pointer to access a given stack slot, which are indexed
from the base of the frame.

Tail and non-tail calls must pass arguments to the called
function on the stack and in registers. The arguments on the
stack are known as the activation frame. It is empty if few
arguments are passed. A continuation frame is created for
non-tail calls to store the values needed upon return from
the call at the return-point. The continuation frame always
contains the return address of the function that created the
continuation frame.

When a GVM branch instruction corresponds to a tail
call, the topmost stack frame only contains the activation
frame. In the case of a non-tail call, the stack frame includes
both the activation frame and, below it, the continuation
frame. When the branch corresponds to a function return,
the stack frame is empty.

In general, a runtime system for the GVM may use a
limited size memory area for allocating stack frames. This
does not imply that recursion depth is limited. Indeed, when
the stack area overflows a new stack area could be allocated
from the heap or the stack frames it contains could be copied
to the heap. Either way it is necessary to detect these over-
flows and then call a stack overflow handler.

The GVM provides for this through the more general
concept of interrupt. An interrupt is an event, such as a
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1. (declare (standard-bindings)
2. (not safe)
3. (inlining-limit 0))
4.

5. (define (foreach f lst)
6. (let loop ((lst lst))
7. (if (pair? lst)
8. (begin
9. (f (car lst))

10. (loop (cdr lst)))
11. #f)))

Figure 1. Source code of the foreach function

stack area overflow, heap overflow, and preemptive multi-
threading timer interrupt, that disrupts the normal sequence
of execution. The GVM polls for interrupts using interrupt
checks that are spread throughout the code. GVM branch
instructions carrying a poll flag perform interrupt checks.
Before the transfer of control, the presence of an interrupt
is checked and an appropriate handler is called if an inter-
rupt is detected. Note that combining the poll operation with
the branch instruction provides some optimization opportu-
nities: the branch destination can be the destination of the
target language conditional branch in the case of an inter-
rupt check failure.

The front-end guarantees that the frame size grows by at
most one slot per GVM instruction and also that the num-
ber of GVM instructions executed between poll points is
bounded by the constant Lmax, the maximum poll latency
(see [6] for details). Consequently, the bounds of the stack
area will never be exceeded if an extra Lmax slots are re-
served at the end of the stack area.

2.3 Example
To illustrate the operation of the front-end and specifically
the management of the stack, consider the function foreach
whose source code is given in Figure 1. This function con-
tains both a tail call to loop and a non-tail call to f. To
make the GVM code generated easier to read, declarations
are used in the source code to ensure that the primitive func-
tions pair?, car, and cdr get inlined, and dynamic type
checks are not performed by car and cdr, and the loop is
not unrolled.

The GVM code generated for this example is given in
Figure 2 (the code’s syntax has been altered in minor ways
from the normal compiler output to make it easier to follow).
In the GVM code small integers prefixed with a “#” are
basic block labels. The front-end has translated the call to
pair? into an ifjump instruction of the primitive ##pair?.
It has also translated the calls to car and cdr into apply
instructions of the primitives ##car and ##cdr respectively,
which do not check the type of their argument.

Basic blocks #1 and #2 are first-class blocks (a function
entry-point and return-point respectively) and the others are
local blocks. Upon entry to the foreach function, at basic

1. #1 fs=0 entry-point nparams=2 ()
2. jump fs=0 #3
3.

4. #2 fs=3 return-point
5. r2 = (##cdr frame[3])
6. r1 = frame[2]
7. r0 = frame[1]
8. jump/poll fs=0 #3
9.

10. #3 fs=0
11. if (##pair? r2) jump fs=0 #4 else #6
12.

13. #4 fs=0
14. frame[1] = r0
15. frame[2] = r1
16. frame[3] = r2
17. r1 = (##car r2)
18. r0 = #2
19. jump/poll fs=3 #5
20.

21. #5 fs=3
22. jump fs=3 frame[2] nargs=1
23.

24. #6 fs=0
25. r1 = ’#f
26. jump fs=0 r0

Figure 2. GVM code generated for the foreach function

block #1, the parameters f and lst are contained in r1 and
r2 respectively, and r0 contains the return address. When
the list lst is non-empty, all three registers are saved to
the stack (at lines 14-16) to create a continuation frame for
the non-tail call to f. r1 is set to the first element of the
list, r0 is set to the return-point, a reference to basic block
#2, and f is jumped to (at line 22) with an argument count
of 1 and a frame size of 3 to account for the allocation of
the continuation frame and an empty activation frame. At
the return-point, basic block #2, the continuation frame is
read (at lines 5-7) to prepare the tail call to loop (at line 8).
The tail call is to a known function so it is simply a jump
to basic block #3 with a frame size of 0 to account for the
deallocation of the continuation frame.

Finally, note the placement of two interrupt checks at
lines 8 and 19 that guarantee a bounded number of GVM
instructions executed between interrupt checks and conse-
quently stack-overflow checks.

3. Data Representation
The main difficulty in translating GVM code to the target
language concerns the GVM branch instructions. To imple-
ment tail calls correctly this must be done without stack
growth. As will be explained in Section 4.2, a portable tram-
poline mechanism is used to jump to an arbitrary destination.
We first explain the issue of data representation.

Several data types are builtin in Scheme [14, 19]: num-
bers, booleans, characters, strings, symbols, empty-list,
pairs, vectors, promises, procedures and I/O ports. In Scheme,
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ParentEntryPoint
Symbol name
ControlPoint[] ctrlpts
ScmObj info

EntryPoint
int nfree

ReturnPoint
int fs
int link

Closure
ScmObj[] slots

ControlPoint
int id
ParentEntryPoint parent

Jumpable
Jumpable jump()

Pair
ScmObj car
ScmObj cdr

Fixnum
int val

Boolean
bool val

NullFrame
ScmObj[] slots

ScmObj

Symbol
String name
int hash
bool interned

…

ScmObj abstract class

Figure 3. Class hierarchy for Scheme objects, suitable for a class-based host language such as Java.

strings are mutable and symbols are equivalent to immutable
strings. Complex numbers are supported and numbers can be
exact or inexact. Like other Scheme systems, Gambit imple-
ments numbers using multiple concrete types: fixnum for
limited precision exact integers, bignum for unlimited pre-
cision exact integers, ratnum for exact rationals, flonum for
inexact real numbers (IEEE754 floating point numbers), and
cpxnum for complex numbers with non-zero imaginary part.
Gambit also provides, as extensions to the standard, other
useful types including user-defined structure types (struc-
tures), dictionaries (tables), weak references (wills), vectors
of 8/16/32/64 bit integers and 32/64 bit floats (homogeneous
vectors), and an “undefined value” (void).

For a class-based target language the data types supported
by Gambit are represented using a class hierarchy defined in
the Gambit runtime system. Figure 3 gives the relevant parts
of the class hierarchy used by the Java back-end. The root
class is ScmObj and most types are directly derived from this
abstract class. The exception is the Jumpable abstract class
which is used in the implementation of procedures, closures
and the trampoline mechanism (Section 4.2).

With the dynamically typed target languages (JavaScript,
PHP, Python and Ruby) it is advantageous for performance
reasons to map the Scheme types to similar types in the
target language, and only use an object-based representation
when required. For example, the Scheme boolean values
are mapped to the target language’s boolean values, and the
empty list and void values are respectively mapped to null

and undefined in JavaScript, and in Python the empty list is
an instance of the Null class of the Gambit runtime system
and the void value is Python’s builtin None value.

For all the dynamically typed target languages fixnums
are mapped to native numbers. This has the advantage of
avoiding boxing and unboxing operations when operating on
small integers, a fairly common operation. All other types of
numbers are boxed (instances of the class Bignum, Flonum,
Ratnum or Cpxnum of the Gambit runtime system). The
following types may be mapped to a native type of the

target language: symbols are mapped to JavaScript strings
and Ruby symbols; vectors are mapped to arrays except for
PHP due to PHP’s awkward array reference semantics.

Given that values of type Jumpable have a single jump

method and all the dynamically typed target languages sup-
port attaching attributes to functions, Jumpable values are
represented using functions of the target language, except
for PHP where Jumpable and its derived classes are imple-
mented using PHP classes (for compatibility with versions
of PHP prior to 5.3).

Other types, such as pairs, strings and characters are rep-
resented using classes.

4. GVM Code Translation
This section explains the translation of the GVM code to
the target language. Except for syntactic differences, similar
code is generated for all target languages. For brevity we
explain the translation process using JavaScript as the target
language and mention cases where substantially different
code is generated for another target. The foreach function
is used as an example. Figure 4 gives the relevant parts of
the JavaScript code produced.

To avoid name clashes with other code, all JavaScript
global variables and function names have a distinguishing
prefix (Gambit ). For presentation purposes, this prefix has
been stripped and some minor syntactic changes have been
made such as removing redundant parentheses and braces.
Some optimizations discussed in Section 4.3 have also been
disabled to improve readability.

4.1 GVM State
Efficient access to the GVM state is critical to achieve good
execution speed. For this reason, JavaScript global variables
are used (lines 1-6 in Figure 4). The stack is implemented
with a JavaScript array and the global variable table is a
dictionary. Note that JavaScript arrays grow automatically
when storing beyond the last element, which is convenient
for implementing a stack. The registers, stack pointer and
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argument count are also JavaScript global variables. Other
dynamic target languages use a similar arrangement. In the
case of Java, the runtime system defines the GVM state using
static fields, and the stack is a fixed size array.

4.2 Basic CFG Translation
If we discount the branch destination inlining optimization
that is explained in the next section, the back-end translates
each basic block to a parameter-less JavaScript function that
is conceptually an instance of ControlPoint. Most GVM
instructions are translated straightforwardly to JavaScript
code. The branch instruction at the end of the basic block
is translated to a return of the destination operand, that is
conceptually a Jumpable and concretely a reference to the
JavaScript function containing the code of the destination
basic block, or a JavaScript closure (see Section 4.6).

For example, the GVM branch instruction at the end of
basic block #1 is translated at line 26 to a return of a
reference to function bb3 foreach, which corresponds to
basic block #3.

A trampoline, implemented by the function trampoline

at line 8, is used to sequence the flow of control from the
source to destination basic blocks. The program is started by
calling trampoline with a reference to the basic block of
the program’s entry point.

The poll function called at lines 37 and 54 is needed for
interrupt handling. After checking for interrupts, the poll

function returns its argument if no interrupts occurred, oth-
erwise it returns the function that handles the interrupt.

4.3 Optimizations
With the basic translation each GVM branch incurs the run
time cost of one function return and call. These optimiza-
tions reduce the cost of the trampoline and interrupt checks:
Branch destination inlining. Basic blocks that are only
referenced in a single branch instruction or are very short
(only contain a branch instruction) are inlined at the location
of the branch. This happens frequently in ifjump instructions,
effectively recovering in the target language some of the
structure of the source if. For example, the destination basic
blocks #4 and #6 have been inlined in the if at line 30.
Branch destination call. Instead of returning the destina-
tion operand to the trampoline, it is possible to return the
result of calling the destination operand. For example, the
branch to basic block #3 at line 26 is optimized to return

bb3 foreach();. This allows the JavaScript VM to opti-
mize the control flow and perhaps inline the body of the des-
tination function. This will accumulate stack frames on the
JavaScript VM if it doesn’t do tail call optimization. How-
ever, the depth of the stack is bounded because of the pres-
ence of the calls to poll, which cause an unwinding of the
VM’s stack all the way back to the trampoline.
Intermittent polling. The frequency of calls to the poll

function is reduced by using a counter. Each branch instruc-

1. var r0, r1, r2, r3, r4; // GVM registers
2. var nargs; // argument count
3. var stack = [null]; // runtime stack
4. var sp = 0; // stack pointer
5. var glo = {}; // Scheme global vars
6. var peps = {}; // parent entry points
7.

8. function trampoline(pc) {
9. while (pc !== null)

10. pc = pc(); // call jump method
11. }
12.

13. function poll(dest) {
14. // ...check for interrupts here...
15. return dest;
16. }
17.

18. function Pair(car,cdr) { // pair constructor
19. this.car = car;
20. this.cdr = cdr;
21. }
22.

23. function bb1_foreach() { // ParentEntryPoint
24. if (nargs !== 2)
25. return wrong_nargs(bb1_foreach);
26. return bb3_foreach;
27. }
28.

29. function bb3_foreach() { // Jumpable
30. if (r2 instanceof Pair) {
31. stack[sp+1] = r0;
32. stack[sp+2] = r1;
33. stack[sp+3] = r2;
34. r1 = r2.car;
35. r0 = bb2_foreach; // return address
36. sp += 3;
37. return poll(bb5_foreach);
38. } else {
39. r1 = false;
40. return r0;
41. }
42. }
43.

44. function bb5_foreach() { // Jumpable
45. nargs = 1;
46. return stack[sp-1]; // non-tail call f
47. }
48.

49. function bb2_foreach() { // ReturnPoint
50. r2 = stack[sp].cdr;
51. r1 = stack[sp-1];
52. r0 = stack[sp-2];
53. sp -= 3;
54. return poll(bb3_foreach); // tail call loop
55. }
56. bb2_foreach.id = 1;
57. bb2_foreach.parent = bb1_foreach;
58. bb2_foreach.fs = 3;
59. bb2_foreach.link = 1;
60.

61. bb1_foreach.id = 0;
62. bb1_foreach.parent = bb1_foreach;
63. bb1_foreach.nfree = -1; // not a closure
64. bb1_foreach.name = "foreach";
65. bb1_foreach.ctrlpts = [bb1_foreach,bb2_foreach];
66. bb1_foreach.info = false; // no debug info
67.

68. peps["foreach"] = bb1_foreach;

Figure 4. JavaScript code generated for the foreach func-
tion
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tion with a poll flag decrements the counter. When it reaches
0, the poll function is called, and the counter is reset to
100. For example, line 37, which is a polling branch to basic
block #5, is optimized to:

if (--pollcount === 0)

return poll(bb5_foreach);

else { // inlined call to bb5_foreach

nargs = 1;

return stack[sp-1]; // non-tail call f

}

4.4 Stack Space Leak
The explicit management of the stack array raises a space
leak issue. When sp is lowered, as in line 53, the slots
beyond sp become garbage conceptually, but the JavaScript
VM’s garbage collector is not aware of this and will consider
that all the values contained in those slots are live. The length
of the stack array must be adjusted using sp to avoid the
space leak. This reclaims the unused stack space and also
prevents the garbage collector from retaining the objects in
those slots that would otherwise be reachable.

The resizing of the stack could be done whenever sp is
lowered, but this would be very expensive due to the frequent
changes to sp. Instead, the resizing is performed by the
poll function. This means that there is always some amount
of garbage at the end of the stack array when the VM’s
garbage collection occurs. However, in a bounded time (the
next call to poll) such garbage will truly be unreachable.
The poll function has the following outline:

function poll(dest) {

pollcount = 100;

stack.length = sp + 1;

// ...check for interrupts here...

return dest;

}
Space leaks are also possible when dead GVM registers

contain object references. The poll function could over-
write dead registers based on liveness information computed
by the Gambit compiler, but that is not currently imple-
mented.

4.5 Marshalling Control Points
The code generated also stores some meta information
on the first-class basic blocks (functions bb1 foreach

and bb2 foreach, which are conceptually instances of
ParentEntryPoint and ReturnPoint respectively). This
meta information is used for the implementation of first-
class continuations and the marshalling and unmarshalling
of procedures, closures and continuations.

To support dynamic loading of modules, basic blocks
produced by the compiler are partitioned into named par-
ent procedures. Each named top level Scheme procedure,
such as the foreach procedure, is a parent procedure (note
that a module is treated like a top level Scheme procedure
that executes the initializations it contains). Nested in each
named parent procedure is its proper basic blocks and the

basic blocks of all its subprocedures. A unique zero based
index is assigned to each first-class basic block within a par-
ent. It is thus possible to identify a given control point by
its index and parent procedure (the id and parent prop-
erties of ControlPoint). It is also possible to identify a
given parent procedure by its name (the name property of
ParentEntryPoint). This allows for the marshalling of
control points.

For unmarshalling control points, the peps dictionary
is used (see lines 6 and 68). It maps each parent proce-
dure name to its corresponding ParentEntryPoint. In the
ParentEntryPoint the property ctrlpts is an array of the
control points contained in the parent procedure. By index-
ing this array with the zero based index of the control point,
the JavaScript function corresponding to the control point
can be recovered.

So when control point cp is marshalled, the values
i=cp.id (an integer) and n=cp.parent.name (a symbol)
are sent to the stream. When the unmarshalling node extracts
these values from the stream, it recovers the control point by
evaluating peps[n].ctrlpts[i] . Note that this requires
that all the nodes run compiled programs built with the same
code base, or run interpreted programs (eval is a compiled
Scheme procedure that is in the Gambit runtime system and
thus part of all programs).

For the return-point basic block #2 the properties fs and
link are set at lines 58 and 59. This is required for the
implementation of continuations (see Section 5).

4.6 Closures
The mapping from Scheme closures to JavaScript closures
is designed to support closure marshalling. The GVM’s flat
closures are composed of a number of slots, one referring to
the closure entry point and the rest are the Scheme closure’s
free variables. The JavaScript closure has two free variables:
the slots of the Scheme closure (a JavaScript object) and a
reference to the JavaScript closure itself.

Consider the ccons function (curried cons) whose def-
inition is given in Figure 5 and whose generated JavaScript
code is in Figure 6.

The construction of a Scheme closure is a two step pro-
cess. First, it is allocated using the closure alloc function
(line 1). The slots of the closure are the only parameter of
closure alloc. The actual JavaScript closure is the self

function defined at line 3. Normally, self is called with no
argument (i.e. msg will be undefined). The slots of the clo-
sure are obtained by calling self with a single true argu-
ment.

The first slot is set to the closure’s entry point (line 15).
When the closure is called, with no argument, the first slot
of the closure is accessed (line 6) to branch to the correct
closure entry point. r4 will have been set to a reference to
the closure itself (line 5), so that access to free variables is
possible. For example the access to x is translated to reading
the second slot (line 22).
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1. (define (ccons x)
2. (lambda (y) (cons x y)))

Figure 5. Source code of the ccons procedure

Marshalling closures consists in marshalling all of its
slots. The control point of the closure’s entry point (the first
slot) is marshalled as explained in Section 4.5.

5. Implementing Continuations
We use the incremental stack/heap strategy for managing
continuations [5]. This strategy allows the GVM code to use
a standard procedure call protocol.

In the incremental stack/heap strategy, the current contin-
uation, which is conceptually a list of continuation frames, is
stored in the stack and in the heap. The more recent contin-
uation frames are stored in the stack, and older continuation
frames form a linked chain of objects (as in the “before” part
of Figure 7, which has 3 frames in the stack, and one in the
heap). The continuation frames in the stack are not explicitly
linked, but those in the heap are.

Continuation frames are initially allocated in the stack,
and in some cases, such as when the current continuation is
reified by call/cc, they are later copied to the heap. The
process of copying the stack frames to the heap is called
continuation heapification. For this it is necessary to find
where each stack frame starts and ends by parsing all the
stack. This is achieved by attaching meta information to each
return point: the continuation frame size (fs), and the index
of the slot in that frame where the return address is stored
(link). For example, the continuation frame created for the
non-tail call to f in the foreach has fs=3 and link=1 (this
meta information is set at lines 58-59 in Figure 4).

Given a stack of continuation frames, and the current
return address (ra), it is a simple matter to iterate over
the frames from newest to oldest. The topmost frame has
a size of ra.fs, and stack[sp - ra.fs + ra.link] is
the return address in that frame, which can be used to parse
the next stack frame. This process is repeated until the base
of the stack is reached.

Each continuation frame in the heap is represented as a
JavaScript array with one more element than the frame size.
If we call ra the return address attached to the frame frm,
then frm[0] contains ra and frm[ra.link] contains the
next frame in the chain (the value null marks the end of the
chain). In other words, the heap frames are chained using the
slot of the frame that normally contains the return address.
All other slots of the continuation frame are stored in the
corresponding index in the array.

In our implementation, we store in stack[0] the ref-
erence to the most recent continuation frame in the heap
(the first in the chain). The oldest continuation frame in
the stack, which starts at stack[1], is a special frame be-
cause the return address it contains is always the function
underflow. When the procedure that created that frame re-

1. function closure_alloc(slots) {
2.

3. function self(msg) {
4. if (msg === true) return slots;
5. r4 = self;
6. return slots[0];
7. }
8.

9. return self;
10. }
11.

12. function bb1_ccons() { // ParentEntryPoint
13. if (nargs !== 1)
14. return wrong_nargs(bb1_ccons);
15. r1 = closure_alloc([bb2_ccons,r1]);
16. return r0;
17. }
18.

19. function bb2_ccons() { // EntryPoint
20. if (nargs !== 1)
21. return wrong_nargs(r4);
22. r4 = r4(true)[1];
23. r1 = new Pair(r4,r1);
24. return r0;
25. }
26.

27. bb2_ccons.id = 1;
28. bb2_ccons.parent = bb1_ccons;
29. bb2_ccons.nfree = 1; // 1 free var
30.

31. bb1_ccons.id = 0;
32. bb1_ccons.parent = bb1_ccons;
33. bb1_ccons.nfree = -1; // not a closure
34. bb1_ccons.name = "ccons";
35. bb1_ccons.ctrlpts = [bb1_ccons,bb2_ccons];
36. bb1_ccons.info = false;
37.

38. peps["ccons"] = bb1_ccons;

Figure 6. JavaScript code generated for ccons

turns, the frame will be deallocated, making the stack empty,
and control will be transferred to the underflow function.
This function causes the heap frame in stack[0] to be
copied to the stack and control is transferred to that frame’s
return address. In order to prepare for the next time the stack
is emptied, a reference to the next heap frame is copied to
stack[0], and the slot of the stack frame that contains the
return address is set to the function underflow. The defini-
tion of the underflow function is given in Figure 8.

The heapify cont function given in Figure 7 imple-
ments continuation heapification for JavaScript. The param-
eter ra is the return address back to the procedure that cre-
ated the topmost continuation frame. The algorithm iterates
over the stack frames from top to bottom to create a heap
copy. The oldest stack frame is not copied. Instead, the stack
array is simply reused after shrinking it to the right size. At
the end of heapification, the raw representation of the current
continuation is in stack[0].

With the heapify cont function, it is easy to imple-
ment the continuation API of [7]. The Scheme procedures
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1. function heapify_cont(ra) {
2.

3. if (sp > 0) { // stack has >= 1 frame
4.

5. var fs = ra.fs, link = ra.link;
6. var base = sp - fs;
7. var chain;
8.

9. if (base > 0) { // stack has >= 2 frames
10. chain = stack.slice(base,base+fs+1);
11. chain[0] = ra;
12. sp = base;
13. var prev_frm = chain, prev_link = link;
14. ra = prev_frm[prev_link];
15. fs = ra.fs;
16. link = ra.link;
17. base = sp - fs;
18.

19. while (base > 0) {
20. var frm = stack.slice(base,base+fs+1);
21. frm[0] = ra;
22. sp = base;
23. prev_frm[prev_link] = frm;
24. prev_frm = frm; prev_link = link;
25. ra = prev_frm[prev_link];
26. fs = ra.fs;
27. link = ra.link;
28. base = sp - fs;
29. }
30.

31. stack[link] = stack[0];
32. stack[0] = ra;
33. stack.length = fs + 1;
34. prev_frm[prev_link] = stack;
35.

36. } else {
37. stack[link] = stack[0];
38. stack[0] = ra;
39. stack.length = fs + 1;
40. chain = stack;
41. }
42.

43. stack = [chain];
44. sp = 0;
45. }
46.

47. return underflow;
48. }
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Figure 7. Continuation heapification algorithm and example. Before heapification, continuation frames B, C and D are on
the stack. After heapification with the call heapify cont(RA d), where RA d is the return address back to the procedure that
created frame D, all frames are in the heap and explicitly linked using the frame slot normally containing the return address.

continuation-capture and continuation-return are
the primitive continuation manipulation operations. These
procedures are implemented by the JavaScript code given
in Figure 9. continuation-capture is similar to call/cc
but the continuation passed to the receiver procedure is a raw
continuation (not wrapped in a closure). It is implemented
by calling the heapify cont function with the current re-
turn address and then passing stack[0] to the receiver pro-
cedure. continuation-return takes a raw continuation
and a value, and resumes the continuation with that value as

its result. It is implemented by returning to the underflow

function after setting up an empty stack with stack[0] re-
ferring to the continuation to resume.

call/cc is a thin wrapper over these primitives. The
raw continuation produced by continuation-capture is
wrapped in a closure, which is what call/cc’s receiver
expects. The implementation is given in Figure 10.

Once heapified, a continuations can be marshalled easily
because each frame is essentially a closure (the return ad-
dress is a control point similar to a closure’s entry point).
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1. function underflow() {
2. var frm = stack[0]; // get next frame
3.

4. if (frm === null) // end of continuation?
5. return null; // terminate trampoline
6.

7. var ra = frm[0];
8. var fs = ra.fs;
9. var link = ra.link;

10. stack = frm.slice(0,fs + 1);
11. sp = fs;
12. stack[0] = frm[link];
13. stack[link] = underflow;
14.

15. return ra;
16. }

Figure 8. Definition of the underflow function

1. function bb1_continuation_capture() {
2. var receiver = r1;
3. r0 = heapify_cont(r0);
4. r1 = stack[0];
5. nargs = 1;
6. return receiver;
7. }
8.

9. function bb1_continuation_return() {
10. sp = 0;
11. stack[0] = r1;
12. r0 = underflow;
13. r1 = r2;
14. return r0;
15. }

Figure 9. Implementation of the continuation primitives
continuation-capture and continuation-return

(define (call/cc receiver)
(continuation-capture
(lambda (k)

(receiver (lambda (r)
(continuation-return k r))))))

Figure 10. Definition of call/cc

6. Evaluation
Our main interest is evaluating the execution speed of our
approach, that is, the speed for executing various styles of
programs. The compilation time is of little concern as there
is no reason to believe that it would vary significantly be-
tween competing approaches.

Evaluating execution speed can be done by comparing
it to existing compilers targeting dynamic languages. The
only mature Scheme compilers we know of that target dy-
namic languages are those targeting JavaScript, specifically
Scheme2JS and Spock. For that reason we limit our compar-
ison to those systems and only use the Gambit JavaScript
back-end (which we call Gambit-JS). Moreover, it is in-
teresting to do this evaluation using several state-of-the-art
JavaScript VMs to see how this affects execution speed.

6.1 Methodology
Our methodology consists in executing with each system
specially selected benchmark programs that represent use-
cases of non-tail calls, tail calls and first-class continuations.

Although it has the virtue of being empirical, the method-
ology has pitfalls for comparing the implementation of the
approaches because the compilers may adopt different im-
plementation strategies for features unrelated to tail calls
and first-class continuations. Some optimization may be im-
plemented in one compiler and not the other, even though
it could have been, giving one compiler an advantage that
is not related to the continuation implementation approach.
We are interested here in comparing the approaches as im-
plemented by the compilers, not the compilers as a whole.
For this reason we have carefully chosen the source pro-
grams, programming style, declarations, and command-line
options, to avoid unrelated differences. The target JavaScript
code generated was examined manually to ensure perfor-
mance differences were mainly due to the continuation im-
plementation approach. Specifically, we have avoided:
Local definitions. The Scheme2JS compiler is able to
translate parts of the source program into the isomorphic
JavaScript code when it can determine that first-class con-
tinuations need not be supported for those parts. This is
frequently the case when the entire benchmark program is a
set of definitions within an enclosing function (because the
program analysis is simpler). For example, a variant of the
fib35 benchmark where the recursive function is local to
another function is compiled by Scheme2JS to JavaScript
code that runs 7 times faster on V8 than when the recur-
sive function is global. The other compilers do not have this
optimization.
Non-primitive library functions. Primitive library func-
tions like cons and car are implemented similarly by the
different compilers and are inlined. More complex library
functions, such as append, map and equal?, have a wider
range of possible implementations (level of type checking,
precision of error messages, variation in object representa-
tion, etc). For this reason, programs using non-primitive li-
brary functions have been avoided or they contain a generic
Scheme definition of the function with calls to primitive li-
brary functions.
Type checking. Scheme2JS and Spock primitive functions
do not type check their arguments. Gambit-JS’s type check-
ing was disabled with the declaration (declare (not

safe)).
Non-integer numbers. Scheme2JS and Spock use JavaScript
numbers to represent Scheme numbers (i.e. they have a par-
tial implementation of the numeric tower). The declaration
(declare (fixnum)) was used for Gambit-JS so that all
arithmetic operations would be performed on JavaScript
numbers, like the other systems.
Function inlining. Gambit-JS and Scheme2JS do user-
function inlining differently and under different condi-
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tions. Because function inlining has a big impact on per-
formance, it has been disabled with Gambit’s (declare

(inlining-limit 0)) declaration and Scheme2JS’s com-
mand line option --max-inline-size 0. Spock does not
inline functions.

Scheme2JS and Spock do not perform argument count
checking because they use the JavaScript semantics for ar-
gument passing where it is allowed to pass fewer or more
arguments than there are formal parameters. Gambit-JS does
perform argument count checking as it is necessary for rest
parameter handling, and it provides additional safety and
precise error messages. It is not easy to remove the argu-
ment count checking in general, and it can be argued that
it is consistent with the virtual machine approach, so it was
not disabled in the experiments. The overhead of argument
count checking is fairly low (we have measured experimen-
tally using the fib35 benchmark that the overhead is less
than 5%).

Note that Scheme2JS and Spock do not support mar-
shalling of closures and continuations, which is the moti-
vation for our work.

6.2 Benchmark Programs
There are two groups of benchmark programs. The first
group, containing the programs fib35, nqueens12, and
oddeven, do not manipulate first-class continuations. The
purpose of these programs is to evaluate the impact on func-
tion calls of supporting first-class continuations. The pro-
gram oddeven performs only tail calls.

The programs in the second group use call/cc in var-
ious ways. The programs ctak and contfib30 have non-
tail-recursive functions of moderate recursion depth: ctak
reifies each continuation of its recursion, and contfib30

reifies only the continuations at the leaves of the recur-
sion. The remaining programs have a shallow call graph
(i.e. the current continuation is only a few frames deep when
call/cc is called). The program btsearch2000 performs
a backtracking search, and threads10 is a thread scheduler
that interleaves the execution of 10 threads.

The source code of the benchmark programs is given in
Appendix A.

6.3 Setting
A computer with a 2.6 GHz Intel Core i7 processor and
16 GB RAM is used in all the experiments. The latest ver-
sions of four popular web browsers are used: Microsoft Edge
20.10240.16384.0, Google Chrome 44.0.2403.157, Mozilla
Firefox 40.0.2, and Apple Safari 8.0.6 (Chakra, V8, Spider-
Monkey, and Nitro JavaScript VMs respectively). Microsoft
Edge is run on Windows 10.0.10240, and all other browsers
are run on OS X 10.10.5. We use more than one JavaScript
VM in order to evaluate the effect of the choice of VM. The
performance of a system obviously depends on how well the
VM optimizes the style of JavaScript code generated by the
Scheme system (code structure, amenability to analysis, set

of language constructs used, etc). As the style departs from
what is expected of “normal” code, there is a higher likeli-
hood that the authors of the VM have not invested the effort
to implement an optimization for that style of code.

The Scheme systems used are:

• Gambit-JS version 4.7.8 with the declarations (declare
(standard-bindings) (fixnum) (not safe)

(block) (inlining-limit 0)),
• Scheme2JS version 20110717 with command-line op-

tions: --max-inline-size 0 --call/cc

--trampoline,
• Spock version 4.7.0 with no special command-line op-

tions.

6.4 Results
The execution times of the benchmark programs using
Chakra, V8, SpiderMonkey, and Nitro are given in Table 1
a-d respectively. The times in seconds is given (average of
20 runs), and for Scheme2JS and Spock, the ratio with the
Gambit-JS time is also given.

Gambit-JS is consistently faster than the other systems
on all JavaScript VMs tested and its best absolute execution
times are obtained using Chakra.

If we focus on Table 1a, which gives the times on Chakra,
we see that Gambit-JS is 3.2 to 490.7 times faster than
Scheme2JS, and 9.4 to 104.9 times faster than Spock. For
reference, Gambit-JS on Chakra is on average 7 times slower
than when using the Gambit-C compiler (compilation to C
then to native code).

Scheme2JS has its best relative times when call/cc

is not used (3.2 to 29.2 times slower). When call/cc is
used, the performance depends greatly on the depth of the
continuation where the call/cc is called (82.6 to 490.7
times slower). The largest slowdowns are for ctak and
contfib30. These programs call call/cc in moderately
deep recursions and there is repetitive capturing of (parts
of) the continuations. The large slowdown is explained by
the fact that the Replay-C algorithm copies and restores the
complete continuation on the JavaScript VM stack every
time a continuation is captured and invoked. Our approach
only copies the frames that have not yet been captured and
restores continuations incrementally, one frame at a time, so
the cost does not depend on the depth of the continuation.
When using Nitro, Table 1d, the slowdown increases dramat-
ically to 709.1× on contfib30. This is probably due to a
higher hidden constant on that VM for copying/restoring the
stack, which is related to the cost of throwing and catching
exceptions to iterate over the stack frames.

The CPS conversion used by Spock makes it straightfor-
ward to reify continuations because all functions are passed
an explicit continuation parameter. Unsurprisingly, Spock
has its best relative times when call/cc is used. If we fo-
cus on Table 1d (Nitro), we see that Nitro is 56.4 to 123.1
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Program Gambit-JS Scheme2JS Spock
fib35 .39 11.30 29.2× 14.32 37.0×
nqueens12 .49 2.92 5.9× 11.90 24.2×
oddeven .39 1.23 3.2× 40.79 104.9×
ctak .12 57.90 490.7× 1.62 13.7×
contfib30 .94 353.31 375.9× 8.82 9.4×
btsearch2000 .94 77.78 82.6× 14.15 15.0×
threads10 .64 71.27 112.2× 16.99 26.7×
a. Execution times using Chakra (Microsoft Edge 20.10240.16384.0)

Program Gambit-JS Scheme2JS Spock
fib35 .52 7.91 15.3× 31.47 61.0×
nqueens12 .64 3.97 6.2× 17.01 26.8×
oddeven .43 1.18 2.8× 51.37 119.7×
ctak .15 21.68 140.8× 2.33 15.1×
contfib30 1.08 119.70 111.0× 13.21 12.3×
btsearch2000 1.20 22.39 18.7× 19.07 16.0×
threads10 .85 28.16 33.0× 28.67 33.7×

b. Execution times using V8 (Google Chrome 44.0.2403.157)

Program Gambit-JS Scheme2JS Spock
fib35 .52 1.26 2.4× 4.39 8.4×
nqueens12 .70 .77 1.1× 3.69 5.2×
oddeven .41 1.01 2.5× 9.50 23.3×
ctak .14 30.90 227.2× .68 5.0×
contfib30 .80 155.12 192.9× 3.66 4.6×
btsearch2000 1.16 37.71 32.5× 8.05 6.9×
threads10 .78 33.98 43.7× 6.48 8.3×

c. Execution times using SpiderMonkey (Mozilla Firefox 40.0.2)

Program Gambit-JS Scheme2JS Spock
fib35 .37 1.81 4.9× 45.06 122.1×
nqueens12 .42 .66 1.6× 23.46 56.4×
oddeven .61 .76 1.3× 74.85 123.1×
ctak .14 90.47 650.9× 2.38 17.1×
contfib30 .86 609.79 709.1× 14.39 16.7×
btsearch2000 1.80 73.73 41.0× 24.92 13.9×
threads10 .76 72.06 94.2× 40.42 52.8×

d. Execution times using Nitro (Apple Safari 8.0.6)

Table 1. Execution times in seconds using various
JavaScript VMs

times slower when call/cc is not used but only 13.9 to
52.8 times slower when call/cc is used. We suspect that
when call/cc is not used the creation of closures for the
continuation frames of non-tail calls is more expensive than
using an explicit representation on a stack as in Gambit-
JS. It is surprising that for oddeven, which only performs
tail calls (i.e. no continuation frames are created), the rel-
ative time goes up to 123.1×. This is probably due to the
cost of unwinding the JavaScript VM’s stack at regular in-
tervals to avoid overflowing it. Spock does this through a
check at every function entry, similar to Gambit-JS’s inter-
rupt checks on branch instructions, but not intermittently.
When a counter is manually added to check intermittently,
the time is roughly halved, which is still much slower than
Gambit-JS. It is likely that this high cost is accounted for
by a bad interaction between the structure of the generated
code and the Nitro optimizer (in particular the Spock stack
checks use the JavaScript arguments form, which is known
to disable some optimizations).

Program Gambit-JS Scheme2JS Spock
V8 SM N V8 SM N V8 SM N

fib35 1.3 1.3 1.0 .7 .1 .2 2.2 .3 3.1
nqueens12 1.3 1.4 .8 1.4 .3 .2 1.4 .3 2.0
oddeven 1.1 1.0 1.6 1.0 .8 .6 1.3 .2 1.8
ctak 1.3 1.2 1.2 .4 .5 1.6 1.4 .4 1.5
contfib30 1.1 .9 .9 .3 .4 1.7 1.5 .4 1.6
btsearch2000 1.3 1.2 1.9 .3 .5 .9 1.3 .6 1.8
threads10 1.3 1.2 1.2 .4 .5 1.0 1.7 .4 2.4
geo. mean 1.2 1.2 1.2 .5 .4 .7 1.5 .4 2.0

SM = SpiderMonkey, N = Nitro

Table 2. Relative execution times for each benchmark and
Scheme system using Chakra, V8, SpiderMonkey, and Nitro.
The baseline is the time for that benchmark on that Scheme
system using Chakra.

We will now examine how the performance of the Scheme
systems varies across JavaScript VMs. This is an important
issue because a web developer has no control over the web
browser used by the clients. The code must run reasonably
fast on all the popular JavaScript VMs. Table 2 gives the rela-
tive execution times for each benchmark and Scheme system
using V8, SpiderMonkey, and Nitro, relative to Chakra.

For Gambit-JS on V8, the benchmarks run 1.1 to 1.3
times slower than they do on Chakra. On SpiderMonkey,
the benchmarks run 0.9 to 1.4 times slower than they do
on Chakra. On Nitro, the benchmarks run 0.8 to 1.9 times
slower than they do on Chakra. For each of these VMs,
the geometric mean of the slowdowns is 1.2×. The com-
pactness of these ranges and the consistent average slow-
down suggests that for Gambit-JS the performance of a pro-
gram varies little between VMs. In fact, across all the bench-
marks and VMs, the maximum execution speed ratio is 1.9×
(btsearch2000 on Nitro and Chakra).

Consequently, for Gambit-JS, it is feasible to use the per-
formance of a program on Chakra to predict its approximate
performance on V8, SpiderMonkey, and Nitro. Performance
is much less predictable for the other systems. Scheme2JS
has its best execution times on SpiderMonkey where it is
2.6× faster than Chakra on average and up to 9× faster
(fib35). Similarly Spock has its best execution times on
SpiderMonkey where it is 2.8× faster than Chakra on av-
erage and up to 4.3× faster (oddeven).

Of course, Gambit-JS is not completely immune to the
set of optimizations performed by the JavaScript VM. In fact
performance anomalies were encountered in tests of Gambit-
JS on earlier versions of Firefox (version 15.0.1). With that
version of Firefox the range of the slowdowns for Gambit-
JS is about the same as for Firefox 40.0.2 for the bench-
marks in the first group, and roughly 4 times larger than
for Firefox 40.0.2 for the benchmarks in the second group.
One might think that the cause of the higher slowdowns in
the second group is the use of call/cc, but further inves-
tigation reveals that the issue is the implementation of clo-
sures in the Gambit-JS back-end. All programs in the second
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group create and call closures frequently, and especially so in
the btsearch2000 benchmark, which has the highest slow-
down. Our implementation of closures appears to be han-
dled by that version of SpiderMonkey less efficiently than
by Chakra, V8, and Nitro. This has been verified with a test
program that creates and calls closures in a tight loop. We
can imagine that older versions of the tested JavaScript VMs
or current VMs we haven’t tested and that implement less
effective optimizations would also have less predictable per-
formance. However, we believe that the simple constructs, in
particular the avoidance of try/catch and arguments, and
the simple code structure used in the output of Gambit-JS
make it more likely that a JavaScript VM will compile the
code efficiently.

7. Conclusion
We have proposed a VM-based approach for implementing
tail calls without stack growth and first-class continuations in
a Scheme compiler targeting Java, JavaScript, PHP, Python
and Ruby. The approach supports marshalling and unmar-
shalling closures, continuations and other Scheme data, al-
lowing the migration of computational tasks between the
supported target languages.

The compiler uses an intermediate level representation,
the Gambit Virtual Machine (GVM), which is translated to
the target language using a trampoline and an explicit repre-
sentation of the GVM runtime stack. This allows continua-
tions to be implemented with most of the algorithms used by
native code compilers. We use the incremental stack/heap
strategy [5], which allows the GVM code to use a stan-
dard function call protocol with zero overhead for code that
doesn’t manipulate first-class continuations and a cost for in-
voking a continuation that is proportional to the size of the
topmost continuation frame.

Our experiments on specially selected benchmark pro-
grams on four popular JavaScript VMs show that the ap-
proach compares favorably to the Replay-C algorithm used
in the Scheme2JS compiler and to the Cheney on the MTA
approach used in the Spock compiler. The execution time
is consistently faster for our approach. When comparing
Gambit-JS to Scheme2JS, Gambit-JS is 3.2 to 491 times
faster on Chakra, 2.8 to 141 times faster on V8, 1.1 to 227
times faster on SpiderMonkey, and 1.3 to 709 times faster on
Nitro. When comparing Gambit-JS to Spock, Gambit-JS is
9.4 to 105 times faster on Chakra, 12.3 to 120 times faster
on V8, 4.6 to 23 times faster on SpiderMonkey, and 14 to
123 times faster on Nitro. Our experiments also show that
the performance of the code generated by Gambit-JS is more
predictable across VMs than for the other systems.
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A. Source Code of Benchmark Programs
1. (define (app lst1 lst2)
2. (if (pair? lst1)
3. (cons (car lst1) (app (cdr lst1) lst2))
4. lst2))
5.

6. (define (one-up-to n)
7. (let loop ((i n) (lst ’()))
8. (if (= i 0)
9. lst

10. (loop (- i 1) (cons i lst)))))
11.

12. (define (explore x y placed)
13. (if (pair? x)
14. (+ (if (ok? (car x) 1 placed)
15. (explore (app (cdr x) y)
16. ’()
17. (cons (car x) placed))
18. 0)
19. (explore (cdr x)
20. (cons (car x) y)
21. placed))
22. (if (pair? y) 0 1)))
23.

24. (define (ok? row dist placed)
25. (if (pair? placed)
26. (and (not (= (car placed) (+ row dist)))
27. (not (= (car placed) (- row dist)))
28. (ok? row (+ dist 1) (cdr placed)))
29. #t))
30.

31. (define (nqueens n)
32. (explore (one-up-to n)
33. ’()
34. ’()))
35.

36. (run-bench "nqueens12" (lambda () (nqueens 12)))

Source code of nqueens12

1. (define (odd n) (if (= n 0) #f (even (- n 1))))
2. (define (even n) (if (= n 0) #t (odd (- n 1))))
3.

4. (run-bench "oddeven" (lambda () (odd 100000000)))

Source code of oddeven

1. (define (fib n)
2. (if (< n 2)
3. 1
4. (+ (fib (- n 1))
5. (fib (- n 2)))))
6.

7. (run-bench "fib35" (lambda () (fib 35)))

Source code of fib35

1. (define (contfib n)
2. (if (< n 2)
3.

4. (call/cc
5. (lambda (k)
6. (k 1)))
7.

8. (+ (contfib (- n 1))
9. (contfib (- n 2)))))

10.

11. (run-bench
12. "contfib30"
13. (lambda () (contfib 30)))

Source code of contfib30

1. (define fail (lambda () #f))
2.

3. (define (in-range a b)
4. (call/cc
5. (lambda (cont)
6. (enumerate a b cont))))
7.

8. (define (enumerate a b cont)
9. (if (> a b)

10. (fail)
11. (let ((save fail))
12. (set! fail
13. (lambda ()
14. (set! fail save)
15. (enumerate (+ a 1) b cont)))
16. (cont a))))
17.

18. (define (btsearch n)
19. (let* ((n*2 (* n 2))
20. (x (in-range 0 n))
21. (y (in-range 0 n)))
22. (if (< (+ x y) n*2)
23. (fail) ;; backtrack
24. (cons x y))))
25.

26. (run-bench
27. "btsearch2000"
28. (lambda () (btsearch 2000)))

Source code of btsearch2000
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1. ;; Queues.
2.

3. (define (next q) (vector-ref q 0))
4. (define (prev q) (vector-ref q 1))
5. (define (next-set! q x) (vector-set! q 0 x))
6. (define (prev-set! q x) (vector-set! q 1 x))
7.

8. (define (empty? q) (eq? q (next q)))
9.

10. (define (queue) (init (vector #f #f)))
11.

12. (define (init q)
13. (next-set! q q)
14. (prev-set! q q)
15. q)
16.

17. (define (deq x)
18. (let ((n (next x)) (p (prev x)))
19. (next-set! p n)
20. (prev-set! n p)
21. (init x)))
22.

23. (define (enq q x)
24. (let ((p (prev q)))
25. (next-set! p x)
26. (next-set! x q)
27. (prev-set! q x)
28. (prev-set! x p)
29. x))
30.

31. ;; Process scheduler.
32.

33. (define (boot)
34. ((call/cc
35. (lambda (k)
36. (set! graft k)
37. (schedule)))))
38.

39. (define graft #f)
40. (define current #f)
41. (define readyq (queue))
42.

43. (define (process cont)
44. (init (vector #f #f cont)))

45. (define (cont p) (vector-ref p 2))
46. (define (cont-set! p x) (vector-set! p 2 x))
47.

48. (define (spawn thunk)
49. (enq readyq
50. (process (lambda (r)
51. (graft (lambda ()
52. (end (thunk))))))))
53.

54. (define (schedule)
55. (if (empty? readyq)
56. (graft (lambda () #f))
57. (let ((p (deq (next readyq))))
58. (set! current p)
59. ((cont p) #f))))
60.

61. (define (end result) (schedule))
62.

63. (define (yield)
64. (call/cc
65. (lambda (k)
66. (cont-set! current k)
67. (enq readyq current)
68. (schedule))))
69.

70. (define (wait x)
71. (if (> x 0)
72. (begin
73. (yield)
74. (wait (- x 1)))))
75.

76. (define (threads n)
77.

78. (let loop ((n n))
79. (if (> n 0)
80. (begin
81. (spawn (lambda () (wait 100000)))
82. (loop (- n 1)))))
83.

84. (boot))
85.

86. (run-bench
87. "threads10"
88. (lambda () (threads 10)))

Source code of threads10
1. (define (ctak x y z)
2. (call/cc
3. (lambda (k) (ctak-aux k x y z))))
4.

5. (define (ctak-aux k x y z)
6. (if (not (< y x))
7. (k z)
8. (ctak-aux
9. k

10. (call/cc
11. (lambda (k) (ctak-aux k (- x 1) y z)))
12. (call/cc
13. (lambda (k) (ctak-aux k (- y 1) z x)))
14. (call/cc
15. (lambda (k) (ctak-aux k (- z 1) x y))))))
16.

17. (run-bench
18. "ctak"
19. (lambda () (ctak 22 12 6)))

Source code of ctak
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