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Abstract

The Erlang/OTP system has a process centric model of
memory management. Each process is created with a local
heap where it allocates objects. An alternate approach used
in the Erlang to Scheme (ETOS) system is to have a single
system-wide heap in which all processes allocate. We have
performed an empirical performance evaluation of both sys-
tems and found that in most cases the unified heap approach
is better because it improves the speed of inter-process com-
munication, especially when large objects are transferred, it
reduces the overhead of garbage collection for processes with
high allocation rates, and it avoids fragmentation.

1 Introduction

The Erlang programming language encourages the use of
a functional programming style which puts a heavy stress
on the dynamic memory management subsystem. It is thus
important that the management of objects (i.e. allocation,
garbage collection, etc) be efficient.

1.1 Process Local Heap Approach

The approach used in the Erlang/OTP system [Eri01] is to
create each process with a local heap where it allocates ob-
jects and maintains the call stack. These process local heaps
are managed separately by a compacting collector optimized
for Erlang [BS98]. Each process triggers collection indepen-
dently from other processes. The process local heaps are
initially quite small (on the order of a kilobyte unless a spe-
cial option is used) and the heap will grow and shrink as the
needs of the process evolve over time.

1.2 Unified Heap Approach

The ETOS system [Fee00, FL98] takes a different approach
based on a single unified heap shared by all the processes
on a node. This heap contains the continuation of each
process (i.e. the call stack information) and the objects allo-
cated by all processes. It is only when the heap is exhausted
by one of the processes that the whole unified heap is col-
lected. The algorithm used by the Gambit-C Scheme system
[Fee98], on top of which ETOS is built, is a hybrid between a
Cheney-style [Che70] two-space copying algorithm (for man-
aging small objects) and a mark-and-sweep non-compacting
algorithm (for managing large objects and objects created
by the foreign-function interface).

1.3 Performance Folklore

These two approaches are considerably different. The aim
of this work is to analyze these approaches and gain empir-
ical evidence to better understand the tradeoffs. In private
communications we have heard several unsubstantiated ar-
guments in favor of each approach. Here is a summary:

e Pro “process local heap”

1. Good real-time behavior — Shorter collection
pauses will result if objects are distributed in sev-
eral heaps instead of a large unified heap.

2. Low collection overhead — Since there can be
no references to objects in a heap from a differ-
ent process, the heap and all the objects it con-
tains can be deallocated simultaneously at no cost
when the process terminates. Very short running
processes may not even trigger the collector.

3. High locality — The caches may perform better
because the data accessed by a process is con-
tained in a small area of memory.

e Pro “unified heap”

4. Fast intra-node communication — An object
can be communicated to another process on the
same node simply by passing to the process a ref-
erence to the object. The object will remain in
memory as long as some process refers to it (di-
rectly or not). With process local heaps it is nec-
essary to deep copy the arguments of a process
and the messages sent to its mailbox. There is a
saving in time and also in space.

5. Low fragmentation — The whole memory in the
unified heap is available to any process that needs
it: if a process requests a block of memory then
the request will be satisfied without triggering the
collector if at least that much memory is available.
With process local heaps, a process cannot allo-
cate in the heap of another process even if that
heap contains large amounts of unused space. A
low fragmentation will result in a better usage of
memory which translates to less frequent invoca-
tions of the collector.

6. Fast process spawning — Process descriptors
can be handled like any other object and allo-
cated cheaply in the unified heap. With process
local heaps the allocation of processes and their



heaps is under the control of a different memory
manager.

Our goal is to check the validity of these arguments by
comparing the Erlang/OTP system and the ETOS system
on benchmark programs specially designed to stress partic-
ular aspects of the system. We first describe each system in
more detail and then explain the benchmarks and results.

2 Erlang/OTP

The general algorithm used by the Erlang/OTP system col-
lector is described in [BS98]. Given the lack of other doc-
umentation we have examined the source code of version
R7B-3 to better understand the particulars of the system.

Figure 1 shows how processes and their local heaps are
organized. Explicit memory management (¢ lamalloc/free)
is used for allocating process descriptors and their local
heaps. A 32768 entry process descriptor table (not shown)
contains pointers to these descriptors for quickly mapping
a process identifier to a process descriptor. Each process
descriptor contains a pointer to its local heap. Erlang ob-
jects are allocated at one end and stack frames at the other
end. A heap is resized by calling realloc, moving the stack
and possibly the Erlang objects and updating all references
(realloc may have to deallocate the old heap and allocate
a new heap). Note that the explicit memory management
of process descriptors and heaps is prone to fragmentation
of the C heap and slow allocation/deallocation.

The collector performs compaction of the heap using a
two phase algorithm. The first phase sweeps the whole heap
and compacts it and the second phase slides the live objects
back to their final destination. The main advantage of this
algorithm is that it requires no extra space (a Cheney-style
copying collector needs a “to-space” to copy the objects,
which effectively doubles the memory required during the
collection). On the other hand it means the collection time is
proportional to the size of the heap (a Cheney-style copying
collector takes time proportional to the live objects only).

The collector can optionally become generational by sup-
plying a special option when the process is spawned. The
default is to collect the whole local heap, i.e. a fullsweep is
performed, when the process exhausts its local heap.

The algorithm for resizing the heap is rather complex.
Basically, a heap is resized when the live objects at the end
of a collection occupy less than 25% or more than 75% of the
heap. The final size is the smallest integer in a Fibonacci
series that is greater than twice the live objects.

3 ETOS and Gambit-C

The Gambit-C system was designed for portability (it gen-
erates standard C code) and for general use (it makes few
assumptions about the platform, operating system and com-
piler used). One of the consequences of supporting separate
compilation and Scheme’s tail-call semantics in standard C
is that function calls and returns, especially between dif-
ferent modules, is much slower than if machine code was
generated. Programs compiled with Gambit-C run on av-
erage about half as fast as when machine code is generated
[FMRW97]. Fortunately most of the benchmarks used here
rely on local tail-calls which are handled efficiently. There
should not be a big difference between the performance ob-
served with Gambit-C and a good compiler generating ma-
chine code.
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Figure 1: Organization of the Erlang/OTP memory

3.1 Memory Management

To accomodate multitasking environments, the unified heap
can grow and shrink as the needs of the program evolves to
keep the OS process size proportional to the amount of live
data. By default, at the end of a collection cycle, the heap
is resized so that the live objects occupy 50% of the heap
(i.e. there will be as much free space as live objects). This
keeps the collection cost roughly proportional to the allo-
cation cost. As shown in Figure 2 this resizing is achieved
by allocating the heap in 512KB sections which are treated
like a sequence within which allocation proceeds linearly
(stack frames are allocated from the top down and objects
smaller than 1KB are allocated from the bottom up). Each
section contains a from-space and a to-space (not shown)
which is needed for the Cheney-style copying. The sections,
which are obtained from the C heap with malloc/free, are
added or removed to approximate the 50% live ratio. At
the boundary between sections there is some fragmentation
(up to 32KB wasted space) needed for efficient handling of
Scheme’s “rest parameters” and so that the compiler can
combine several allocations in the same basic block and per-
form a single heap overflow test.

In dedicated embedded environments with limited mem-
ory it would be more efficient to use all of physical memory
for the unified heap, thus eliminating the section bound-
ary fragmentation and resizing overhead. Since this set-
ting is probably closer to the target applications of Erlang,
the benchmarks have been run with a command line option
which forces the heap to a given size of 10MB. The section
boundary fragmentation is still present but not the resizing
overhead.

Although the standard distribution of Gambit-C comes
only with a blocking collector (i.e. the collector is only trig-
gered when the heap is full), the collector can be turned
into an incremental one with good real-time behavior as we
have shown in previous work [LF99]. For example, a com-
plex program (the Gambit-C compiler) running on a (now
old) 500Mhz DEC Alpha 21164A processor spent 8% of its
time in the incremental collector and pauses were roughly
one millisecond on average and no more than 3 milliseconds.
The incremental collector was not used in our experiments
because it has not been kept in sync with the recent versions
of Gambit-C.
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Figure 2: Organization of the Gambit-C memory

3.2 Process Management

A priority based scheduler controls the execution of the pro-
cesses. Each process has a priority represented as a floating
point number. This gives a very fine control on the schedul-
ing order and supports deadline scheduling (by setting the
priority to the inverse of the time by which a process must
be done). All synchronization primitives respect the pro-
cess priorities. Red-black trees [CLR90] are used to imple-
ment the various process priority queues. This translates to
slightly slower process queue manipulations, and in particu-
lar process spawning, than those of Erlang/OTP which only
supports four priority levels and uses a small table of linked
lists.

Process descriptors are allocated in the unified heap like
other objects. Each process descriptor contains a reference
to a continuation object which represents the set of frames
in the process’ call stack. Stack frames are allocated linearly
at the top end of the heap. When there is a context switch,
the new process allocates its own stack frames immediately
after those of the previously active process. When a function
returns the current stack frame is removed from the stack
and the caller’s stack frame, if it is not at the top of the
stack, is copied there before control returns to the caller.
This is known as the incremental stack heap strategy for
implementing continuations [CHO99, CHOSS].

4 Comparing Erlang/OTP and ETOS

The versions of the systems we have evaluated are Erlang/OTP

R7B-3 and ETOS 2.4 with Gambit-C 4.0 alpha 7. The plat-
form used is a PC with 1.4GHz AMD Athlon, 64KB L1
I-cache, 64KB L1 D-cache, 256KB L2 cache, 512MB RAM
and running Linux kernel 2.4.2-2 and gcc 2.95.3. Programs
were normally run at least three times on an unloaded ma-
chine and the median run time is reported. The heap size for
ETOS was set to 10MB. No special command-line options
were used for Erlang/OTP and Gambit-C.

4.1 Real-Time Behavior

Erlang is targeted to soft real-time applications for which
it is desirable, but not required, to respond to messages
within a small time frame (on the order of few milliseconds
to tens of milliseconds depending on the application). In
this context an incremental collector is useful if it can limit
the collection pauses to a few milliseconds and leave enough
time for the mutator (main program) to continue doing some
useful work.

At first glance the process local heap approach seems at-
tractive because, if the application data can be evenly dis-
tributed over the processes, each collection will complete in a
fraction of the time it would take with a unified heap. When

build(0,X) -> X;
build(N,X) -> build(N-1,{1,2,3,X}).

process(N,Parent) ->
X = build(N,nil),
Parent ! 0.

go(0,N) -> done;
go(NProcs,N) ->
Child = spawn_opt(garbO0,

process,
[N,self()],
[{min_heap_size,233}]),
receive
X ->X
end,

go (NProcs-1,N) .

Figure 3: Allocating objects with no garbage (garb0)

a process exhausts its (relatively small) heap the node will
pause (i.e. no messages can be handled) while the collector
works. Collections will be more frequent but shorter.

However the distribution of the collections in time must
also be considered. If we take a global view of the system we
see that the real-time response can be compromised. Con-
sider the case where at a given point in time many processes
have almost exhausted their local heap and will be collect-
ing shortly. Even if individual collections are short there can
be a long period of time when the system is not responsive
because it is context-switching from one collecting process
to the next. This may seem like a border case, but in fact
this is to be expected in practice when many similar pro-
cesses are spawned at about the same time; for example a
web-server receiving simultaneous requests for a site’s home
page. The lack of coordination of the collections means it is
impossible to put an upper bound on the pause time.

By using a unified heap the collector has a global view
of memory management and can “plan” how the collection
work is parcelled out. The performance evaluation in [LF99]
showed that maximal collection pauses are close to the aver-
age pause. We did not instrument the Erlang/OTP system
to investigate its worst-case real-time behavior.

4.2 Memory Management Speed and Spawning Speed

To measure the speed of memory management we used the
code in Figure 3. The function “go” spawns “NProcs” pro-
cesses (one at a time) each of which allocates “N” 4-tuples
to build a chain. Note that no garbage is generated in the
tail-recursive function “build” and that little data is com-
municated between the parent and child processes. The
“min_heap_size” option, which is ignored by ETOS, sets
the minimum heap size to 233 words, which is the default
in Erlang/OTP.

In addition to this program (garb0) we tried a vari-
ant where 3 out of 4 tuples immediately become garbage
(garb75) obtained by replacing the “build” and “process”
functions with

build(0,X) -> X;
build(N,X) -> Y={N,N,N,{N,N,N,{N,N,N,N}}},
build(element(1,Y)-1,{1,2,3,X}).

process(N,Parent) ->
X = build(N div 4,nil),
Parent ! 0.



Erlang/OTP garb0 —e—
Erlang/OTP garbO0_gen ——

50 | Erlang/OTP garb75 -0 ]
Erlang/OTP garb75_gen -
ETOS garb0 ——
ETOS garb75 -

Run time in seconds (NProcs=1000000)

O L L L L 1 L L L L 1 L L L L 1

0 50 100 150 200
Tuples allocated per process (N)

Figure 4: Memory management speed with small amounts
of allocation

Finally we also tried variants of these programs which
use the generational collector by adding the spawn option
“{fullsweep_after,2}” (garbO_gen and garb75_gen).

These programs were run with small amounts of alloca-
tion (0 < N < 200 and NProcs = 1000000) and with large
amounts of allocation (0 < N < 50000 and NProcs = 1000).
The run times are shown in Figures 4 and 5 respectively.

Several interesting things can be observed in the results.
When N = 0 there is no allocation (except for the processes)
and the main cost is spawning a process and synchronizing
with it. We see that Erlang/OTP can do this about twice as
fast as ETOS (1.6 seconds compared to 3.0 for ETOS). This
can be explained by the added complexity of manipulating
red-black tree priority queues (this is consistent with a previ-
ous version of Gambit-C which used doubly-linked lists and
no support for priorities, which could do these operations
twice as fast as the current version).

For garb75 and values of N below 45 we see that the
additional cost of allocating tuples is about the same in both
systems (i.e. the curves have a similar slope). This comes
as a surprise because the program generated by ETOS is
an efficient machine code executable with inline code for
the tuple allocations whereas Erlang/OTP is using emulated
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Figure 5: Memory management speed with large amounts
of allocation

BEAM code. The overhead of emulating the BEAM code
in this case does not adversely affect overall performance,
probably because the emulator and emulated code are sitting
in the level 1 cache and the memory accesses needed for
allocating and initializing the tuples are relatively slow on
this fast processor (for both systems). On the other hand
the slope of garb0 in this range is slightly higher. This
is probably due to the additional loop overhead (there are
four times more calls to “build”) and not because of more
expensive allocation.

For a value of N around 50 the Erlang/OTP processes
overflow their local heap and the collector is called, creating
a step in the curve. This step is more pronounced for garb0
because the collector has to move more live objects. More-
over, in the case of garb0, but not in the case of garb75,
there is an additional cost for resizing the local heap. For
larger values of N we see similar steps each time the process
overflows its local heap and garb75 is roughly twice as fast as
garb0. The steps get wider in accordance to the Fibonacci
progression of heap sizes. We also observe that the use of
a generational collector does not give consistently better or
worse performance.

Note that we cannot see any significant inflection of the



build(0,X) -> X;
build(N,X) -> build(N-1,{1,2,3,X}).

process(Struct,Parent) ->
Parent ! Struct.

go(0,Struct) -> done;
go(NProcs,Struct) ->
Child = spawn(comm,process, [Struct,self()]),
receive
X ->X
end,
go (NProcs-1,Struct).

start (NProcs,N) ->
go (NProcs,build(N,nil)).

Figure 6: Code to measure cost of communication

curves that would indicate better cache efficiency when small
local heaps are used. The level 1 data cache can hold a heap
with about 3000 4-tuples (4 bytes for each element plus 4
bytes for the header) and the level 2 cache about 12000 4-
tuples, yet at these points in Figure 5 the garb0 curve is not
anomalous.

Comparatively ETOS’ performance is more regular and
predictable. There is no step in the curve because the collec-
tion time is amortized over all processes. The performance
of garb0 and garb75 is almost identical because when it is
triggered the collector only needs to copy the live objects
and in both programs this represents a very small part of
the unified heap (at most N % 20 bytes for garb0 and one
quarter of that for garb75). ETOS obtains better perfor-
mance as soon as N is above 50, and for sufficiently large
values of N it is 5 times faster on garb0O and 2 times faster
on garb75.

If ETOS used an incremental collector such as the one
presented in [LF99] the cost of memory management would
surely increase. However, we expect this to slow down typ-
ical programs by a factor between 1.5 and 2.5 which would
still be an improvement over Erlang/OTP. In a prototype

implementation of Brooks’ real-time collection algorithm [Bro84],

we obtained a slowdown of 1.69 for a program similar to the
garbage free “build” function written in Scheme.

4.3 Intra-Node Communication

We have used the code in Figure 6 to measure the cost of
intra-node communication. This program creates a struc-
ture (a length “N” chain of 4-tuples) and then spawns pro-
cesses one by one which simply take the structure and send
it back to the parent process. Note that for every process
the structure is copied twice by Erlang/OTP; once to pass
the structure from the parent to the child when the process
is spawned and once to send the structure to the parent’s
mailbox. ETOS does not need to copy the structure because
the parent and child will share a single copy. A reference is
passed to the child and the child adds this reference to the
parent’s mailbox. The run time obtained for 0 < N < 200
and NProcs = 1000000) is shown in Figure 7.

The cost of copying is clearly important. It only takes a
structure of five 4-tuples to offset the higher process spawn-
ing cost of ETOS. Erlang/OTP has a communication over-
head that is proportional to N. The time needed for the dual
copy is about the same as for constructing the structure with

50 ———
Erlang/OTP —e— '
45 ¢ ETOS ——

Run time in seconds (NProcs=1000000)

0 50 100 150 200
Size of structure in tuples (N)

Figure 7: Communication cost for sending and receiving a
structure containing N 4-tuples.

build(0,X) -> X;
build(N,X) -> build(N-1,{1,2,3,X}).

process(0,N,Parent) ->
Parent ! done;
process(NProcs,N,Parent) ->
build(N,nil), % result is ignored
go (NProcs,N),
Parent ! done.

go(NProcs,N) ->
Child = spawn(frag,process, [NProcs-1,N,self()]),
receive
X ->X
end.

start() -> go(10000,500) .

Figure 8: A program that causes fragmentation

the “build” function (compare this curve with the curve for
garbO in Figure 4). On the other hand, the communication
cost for ETOS is a small constant.

4.4 Fragmentation

To show how severe fragmentation can become in the pro-
cess local heap approach we wrote the program shown in
Figure 8. It spawns a total of 10000 processes. Each pro-
cess creates a chain of 500 4-tuples, thus growing its local
heap to about 14KB, and then creates a similar child process
and waits until the child is done. The last process immedi-
ately signals it is done. It is important to note that after
the chain of 500 4-tuples is created it is no longer used and
could be reclaimed. However the process does not allocate
enough objects after this to trigger a collection so the local
heap does not shrink. Almost all the space in the local heap
is wasted. When the program is run the size of the UNIX
process grows to 145MB, which exceeds the memory capac-
ity of small embedded systems. By comparison the UNIX
process grows to 24MB with ETOS, even for much higher



values of N (each process accounts for about 2KB in the heap
if we include the factor of 4 overhead caused by the to-space
and 50% live ratio).

5 Conclusion

The empirical evidence presented in this paper shows that
the unified heap approach to memory management has sev-
eral benefits over the process local heap approach used by
Erlang/OTP R7B-3. Memory management is somewhat
faster (except for processes that allocate very little), intra-
node communication is much faster, and fragmentation is
avoided. Although we did not empirically evaluate the real-
time behavior, we think the unified heap approach is also
superior because it can make tighter maximal pause guar-
antees than the process local heap approach when an incre-
mental collector is used.

The contrived benchmark programs we used were de-
signed to highlight problem areas of the process local heap
approach. A more thorough investigation would be required
to evaluate the approaches with real applications. It is clear
that the performance will depend on the mix of operations of
the application (process spawning rate, allocation rate, life
expectancy of objects, communication rate, size of objects
communicated, etc).

Just before publishing this paper, we have been informed
by the High-Performance Erlang (HiPE) group that they
have completed the implementation of the unified heap ap-
proach in a pre-release of Erlang/OTP. It will be interesting
to see how this affects performance.
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