
Compiling Erlang to SchemeMarc Feeley and Martin LaroseUniversit�e de Montr�ealC.P. 6128 succursale centre-villeMontr�eal H3C 3J7, Canadaffeeley,larosemg@iro.umontreal.caAbstract. The programming languages Erlang and Scheme have manycommon features, yet the performance of the current implementationsof Erlang appears to be below that of good implementations of Scheme.This disparity has prompted us to investigate the translation of Erlang toScheme. Our intent is to reuse the mature compilation technology of cur-rent Scheme compilers to quickly implement an e�cient Erlang compiler.In this paper we describe the design and implementation of the Etos Er-lang to Scheme compiler and compare its performance to other systems.The Scheme code produced by Etos is compiled by the Gambit-C Schemeto C compiler and the resulting C code is �nally compiled by gcc. Onemight think that the many stages of this compilation pipeline wouldlead to an ine�cient compiler but in fact, on most of our benchmarkprograms, Etos outperforms all currently available implementations ofErlang, including the Hipe native code compiler.1 IntroductionErlang is a concurrent functional programming language which has been mostlydeveloped internally at Ericsson for the programming of telecom applications.The language is not purely functional because of its support for concurrent pro-cesses and communication between processes. Scheme shares many similaritieswith Erlang: \mostly" functional programming style, mandatory tail-call opti-mization, dynamic typing, automatic memory management, similar data types(symbols, lists, vectors, etc). Section 2 and Sections 3 brie
y describe these lan-guages (a complete description can be found in [3] and [16, 7]).There is growing interest in Erlang in industry but due to its \in-house"development there is a limited choice of compilers. As the implementors of thesecompilers freely admit [1], \Performance has always been a major problem".On the other hand there are many implementations of Scheme available [18]and the good compilers appear to generate faster code than the Erlang compil-ers available from Ericsson (for example Hartel et al. [13] have shown that the\pseudoknot" benchmark compiled with Ericsson's BEAM/C 6.0.4 is about 5times slower than when compiled with the Gambit-C 2.3 Scheme compiler).Because of the strong similarity between Erlang and Scheme and the avail-ability of several good Scheme compilers, we have begun the implementation of

an Erlang to Scheme compiler called \Etos". Our goal is to reduce developmente�orts by exploiting the analyses and optimizations of the Gambit-C Scheme toC compiler. It is reasonable to believe that most of the Gambit-C technologycan be reused because the similarities between the languages outweigh the di�er-ences (in�x vs. pre�x syntax, pattern matching vs. access functions, catch/throwvs. call/cc, and concurrency). When we started this project it was not clearhowever if the many stages of the compilation pipeline would allow e�cient codeto be generated. In the rest of the paper we explain the major design issues ofan Erlang to Scheme compiler and how these are solved in Etos 1.4, and showthat its performance is very good when compared to other Erlang compilers.2 SchemeThis section brie
y describes Scheme for those unfamiliar with the language.Scheme is a lexically scoped dialect of Lisp (invented by Sussman and Steelein 1975 [19] and enhanced regularly since then) which is both small and ex-pressive. It is an expression-based language with garbage-collection and so pro-motes the functional programming style (but side-e�ects on variables and data-structures are permitted). The language requires that tail-recursion be imple-mented properly [6]. Several builtin data types are available, all of which are�rst-class and have inde�nite extent: boolean, character, string, symbol, list,vector (one dimensional array), procedure (of �xed or variable arity), port (�lehandle), number (unlimited precision integers and rationals (i.e. exact num-bers), and
oating point and complex numbers). Procedures are closed in theirde�nition environment (i.e. they are \closures" containing a code pointer andenvironment) and parameters are passed by value. An anonymous procedure iscreated by evaluating a lambda special form (see example below). Scheme is oneof the few languages with �rst-class continuations which represent the \rest ofa computation" and a construct, call/cc, to transform the current (implicit)continuation into a user-callable procedure. All arithmetic functions are generic,e.g. the addition function can be used to add any mix of number types.3 ErlangErlang, like Scheme, is a garbage-collected expression-based language that islexically scoped (but with unusual scope rules as explained in Section 8), prop-erly tail-recursive, dynamically typed and which uses call-by-value parameterpassing. The data types available are: number (
oating-point numbers and un-limited precision integers), atom (like the Scheme symbol type), list, tuple (likethe Scheme vector type), function, port (a channel for communicating with exter-nal processes and the �le system), pid (a process identi�er), reference (a globallyunique marker), and binary (an array of bytes). Integers are used to representcharacters and lists of integers are used to represent strings. Erlang's arithmeticoperators are generic (any mix of numbers) and the comparison operators cancompare any mix of types.

Erlang's syntax is inspired by Prolog (e.g. [x,y,z], [] and [H|T] denotelists, variables begin with an uppercase letter and atoms with lowercase, patternmatching is used to de�ne functions and take apart data). Erlang does notprovide full uni�cation as in Prolog (i.e. a variable is not an object that canbe contained in data). Note also that a guard can be added to a pattern toconstrain the match (third clause in the example below). The only way to bind avariable is to use pattern matching (in function parameters, the case, receive,and pattern=expr constructs). In particular in pattern=expr the expression isevaluated and the result is pattern matched with the pattern, variables boundin the process have a scope which includes the following expressions.The language was designed to write robust concurrent distributed soft real-time applications in telephony. Local and remote processes are created dynam-ically with the spawn function, and interacted with by sending messages (anyErlang object) to their mailbox which sequentializes and bu�ers incoming mes-sages. Messages are drained asynchronously from the mailbox with the receiveconstruct, which extracts from the mailbox the next message which matches thepattern(s) speci�ed by the receive (a timeout can also be speci�ed).Exceptions are managed using the forms throw expr and catch expr. Eval-uating a throw X transfers control to the nearest dynamically enclosing catch,which returns X. Prede�ned exceptions exist for the builtin functions.Erlang supports a simple module system, which provides namespace manage-ment. Each module speci�es its name, the functions it exports and the functionsit imports from other modules. The form lists:map indicates the function mapin the module lists.Here is a small contrived example of an Erlang function de�nition showingo� some of the features of Erlang:f(green,_) -> 1.5; % ignore second parameterf([H|_],Y) -> T=Y+1, {H,T*T}; % return a two tuplef(X,Y) when integer(X) -> lists:reverse(Y); % X must be an integerf(X,Y) -> lists:map(fun(Z) -> [Z,X+Z] end, Y).This is roughly equivalent1 to the following Scheme de�nition:(define f(lambda (x y) ; parameters of f are x and y(cond ((eq? x 'green) 1.5) ; return 1.5 if x is the symbol green((pair? x)(let ((t (+ y 1))) ; bind t to y+1(vector (car x) (* t t))))((integer? x)(reverse y)) ; y better be a list(else(map (lambda (z) ; pass an anonymous procedure to map(list z (+ x z))) ; create a listy))))) ; y better be a list of numbers1 There are subtle di�erences such as (integer? 2.0) is true in Scheme, but 2.0 isnot an integer in Erlang.

4 Portability vs E�ciencyEarly on we decided that portability of the compiler was important in order tomaximize its usefulness and allow experiments across platforms (di�erent targetmachines but also di�erent Scheme implementations). Etos is written in standardScheme [7] and the generated programs conform fairly closely to the standard.It is clear however that better performance can be achieved if non-standardfeatures of the target Scheme implementation are exploited. For example, theexistence of fast operations on �xed precision integers, i.e. �xnums, is crucialto implement Erlang arithmetic e�ciently. Fixnums are not part of the Schemestandard but all of the high performance Scheme compilers have some way tomanipulate them. To exploit these widespread but not truly standard features,the generated code contains calls to Scheme macros whose de�nition dependson the target Scheme implementation. The appropriate macro de�nition �le issupplied when the Scheme program is compiled. Not all Scheme implementa-tions implement the same macro facilities, but this is not a problem becauseeach macro �le is speci�c to a particular Scheme implementation. This approachavoids the need to recompile the Erlang program from scratch when the targetScheme implementation is changed. For example, the Erlang addition operator,which is generic and supports arguments of mixed
oat and unlimited precisioninteger types, is translated to a Scheme call of the erl-add macro. The macrocall (erl-add x y) may simply expand to a call to a library procedure whichchecks the type of x and y and adds them appropriately or signals a run timetype error, or if �xnum arithmetic is available, it may expand to an inline ex-pression which performs a �xnum addition if x and y are �xnums (and the resultdoesn't over
ow) and otherwise calls the generic addition procedure.Using a macro �le also allows to move some of the code generation details outof the compiler and into the macro �le, making it easy to experiment and tunethe compiler. For example the representation of Erlang data types can easily bechanged by only modifying the macro de�nitions of the operations on that type.5 Direct TranslationWe also wanted the translation to be direct so that Erlang features would mapinto the most natural Scheme equivalent. This has several bene�ts:{ Erlang and Scheme source code can be mixed more easily in an applicationif the calling convention and data representation are similar. Special featuresof Scheme (such as �rst-class continuations and assignment) and languageextensions (such as a C-interface and special libraries) can then be accessedeasily. For this reason, adding extra parameters to all functions to propagatean exception handler and/or continuation would be a bad idea.{ A comparison of compiler technology between Erlang and Scheme compil-ers will be fairer because the Scheme compiler will process a program withroughly the same structure as the Erlang compiler.{ The generated code can be read and debugged by humans.

When a direct translation is not possible, we tried to generate Scheme codewith a structure that would be compiled e�ciently by most Scheme compil-ers. Nevertheless there is often a run time overhead in the generated Schemecode that makes it slower than if the application had been written originally inScheme. For example, Erlang's \<" operator is generic (it works on numbers aswell as lists and other data types) but in most application programs it is onlyused to compare numbers. The code generated by Etos can't use Scheme's \<"primitive directly because it works on numbers only.6 Data TypesThe most important Erlang data types have a direct equivalent in Scheme, asexplained in this section.6.1 NumbersScheme numbers are organized into a class hierarchy: integer � rational � real� complex. Independently of their class, numbers have an \exactness". For in-stance 2.0 denotes the inexact number 2 and 1/2 denotes the exact number 0.5.Scheme exact integers correspond to Erlang integers. In both Scheme and Er-lang, integers can be of limited range. The Erlang speci�cation requires at least24 bit integers but all available compilers support unlimited precision integersby using a bignum representation when the integers are larger than can �t in a�xnum. Scheme inexact reals correspond to Erlang
oats.An unfortunate consequence of this representation is that testing foran Erlang integer or
oat translates into two tests in standard Scheme(i.e. (and (integer? x) (exact? x)) tests if x is an exact integer). The test(integer? x) is typically quite expensive because it must return true on bothexact integers and on inexact reals which happen to have a null fractional part.Again, some non-standard features can help to do this quicker, for example inGambit-C: (or (##fixnum? x) (##bignum? x)).6.2 AtomsScheme symbols can be used to represent Erlang atoms. Both can contain arbi-trary characters and symbols can be compared for equality e�ciently with theeq? predicate (which is simply a pointer comparison in many implementationsof Scheme). The Scheme procedures string->symbol and symbol->string areequivalent to the Erlang built-in functions list_to_atom and atom_to_list ex-cept that the former deals with strings (which is a separate data type in Scheme).One complication is that Scheme is a case-insensitive language and Erlangis case-sensitive. Variable names and symbols in the source of Scheme programsare stripped of their case. A simple solution for converting Erlang function andvariable names is to pre�x uppercase letters with an escape character (i.e. ^), sothat the Erlang variable ListOfFloats becomes ^list^of^floats in Scheme.

Atoms are handled di�erently. The only way to force a particular case forsymbols in Scheme is to use the procedure string->symbol. This means that Er-lang constants containing atoms (e.g. the constant list [1,tWo]) must be createdat run time using string->symbol. This is done by storing the objects createdinto global variables once in the initialization phase of the Scheme program andreferences to these globals replace references to the constants. Constants notcontaining atoms get converted to Scheme constants. For example, the Erlangcall f([1,tWo],[3,4]) gets converted to:(define const1 (string->symbol "tWo")) ; global definitions(define const2 (list 1 const1))... (f const2 '(3 4)) ...Alternative representations for atoms which were rejected are:{ Strings: no special treatment for uppercase letters is needed but the equalitytest is much more expensive.{ Symbols with escape character for uppercase letters: requires an unnaturaland ine�cient translation of list_to_atom and atom_to_list.Gambit-C provides a (non-standard) notation for symbols that preserves case(e.g. |tWo|) so it was possible to reference atoms literally in code and constants.6.3 ListsBoth languages handle lists similarly. In Scheme, lists are made up of the emptylist (i.e. ()) and pairs created with the cons primitive or the variable arity listprimitive. The primitives car and cdr extract the head and tail of a list.6.4 TuplesScheme vectors are the obvious counterpart of tuples. Vectors are constructedeither with the variable arity vector primitive (Erlang's {...,...}), thelist->vector primitive (Erlang's list_to_tuple), or the make-vector primi-tive (which creates a vector of length computed at run time).A minor incompatibility is that tuples are indexed from 1 (with the elementbuiltin function) and Scheme vectors are indexed from 0 (using vector-ref).A more serious problem is that lists and vectors are the only compound datastructures in standard Scheme. Since the Erlang data types port, pid, reference,and binary don't have a direct counterpart in Scheme, they must be implementedusing lists or vectors.We have used vectors to implement these data types (as wellas tuples and functions) because their content can be accessed in constant time.The �rst element of the vector is a symbol which indicates the type and the dataassociated with the type is in the remaining elements. Thus the tuple {1,2,3}is represented by the Scheme vector #(tuple 1 2 3). Note that with this rep-resentation, tuple indexing does not require a run time decrement of the indexto access an element. However, an Erlang type test translates to two Scheme

tests. Thus (and (vector? x) (eq? (vector-ref x 0) 'tuple)) tests if x isa tuple (we need not worry about the vector-ref being out of bound becauseempty vectors are never created by Etos).A more compact representation which is based on the ability to test objectidentity with eq? is to use no tag for tuples and a special tag for non-tuples:(define pid-tag (vector 'pid))(define make-pid (lambda (...) (vector pid-tag ...)))(define pid?(lambda (x)(and (vector? x)(> (vector-length x) 0)(eq? (vector-ref x 0) pid-tag))))This representation was not used because type testing (a frequent operationin pattern matching) is more expensive in this representation. One more test isrequired for non-tuples as shown above and many more tests for tuples (we mustcheck that the �rst element is not one of the tags pid-tag, etc).6.5 FunctionsScheme procedures are the obvious counterpart of Erlang functions. Erlang func-tions are of �xed arity so the variable arity mechanism of Scheme is not necessary.Both Erlang and Scheme can create and call functional objects.Unfortunately, this direct representation does not support error detection.Erlang's general function calling mechanism needs to ensure that the functionthat is being called is of the appropriate arity, and signal a run time error ifit isn't. Because there is no standard way in Scheme to extract the arity of aprocedure or to trap the application of a procedure to the wrong number ofarguments, functional objects are represented as a tagged vector which containsthe function's arity and the corresponding Scheme closure.Toplevel functions of a module contain the arity information in their nameso no arity test is needed when they are called. For example the function barof arity 2 in module foo is translated to a Scheme lambda-expression of arity2 bound to the global variable foo:bar/2 (a valid variable name in Scheme).A call such as foo:bar(1,2) is then translated to a Scheme call to foo:bar/2which is guaranteed to be bound to a procedure of arity 2.6.6 Ports, Pids, References and BinariesThe remaining Erlang data types can be represented with tagged Scheme vectorsas shown above. Ports, which allow interaction with external processes (such asdevice drivers written in C), will clearly have to be built with some implemen-tation speci�c extension to Scheme (i.e. a foreign function interface). There areno raw binary array data types in standard Scheme so a space ine�cient vectorbased representation must be used. Scheme strings can't be used because thereis no constraint on the size of characters and the integer->char procedure may

not implement a natural encoding (such as ASCII). A compact representation ispossible in Gambit-C by using bytevectors (arrays of 8, 16 and 32 bit integers).7 Front EndTo ensure compatibility with existing Erlang compilers, Etos' parser speci�ca-tion was derived from the one for the JAM interpreter and processed by ourown Scheme parser generator [8, 5]. The original parser constructs a parse treebuilt of tuples. Because Etos needs to attach semantic information on the nodesof the parse tree, a conversion phase was added to extend the tree nodes withadditional �elds. This conversion also computes the bound variables at eachnode and performs constant propagation and constant folding. Constant propa-gation and folding are mainly needed to avoid allocation of structures which areconstant, such as in the de�nition f(X) -> Y={1,2}, [X,Y,3,4]. which getscompiled as though it were: f(X) -> [X|[{1,2},3,4]]. The list [{1,2},3,4]is represented internally as the Scheme constant list (#(tuple 1 2) 3 4).Following this, the free variables before and after each node are computed.This is done as a separate pass because the bound variable analysis requires a left-to-right traversal of the parse tree, whereas the free variable analysis requires aright-to-left traversal. The free variables are needed to e�ciently translate case,if, and receive expressions, which is explained in the next section.8 Binding and Pattern Matching8.1 Binding in ErlangErlang's approach for binding variables is a relic of its Prolog heritage. Bindingis an integral part of pattern matching. Once it is bound by a pattern matchingoperation, a variable can be referenced in the rest of a function clause but can'tbe bound again (unless it has become an \unsafe" variable, see below). Forexample, in f({A,B}) -> [X,X,X]=A, B+X. the function f will pattern matchits sole argument with a two-tuple. In the process, the variables A and B getbound to the �rst and second element respectively. After this, A is referencedand pattern matched with a list containing three times the same element. Notethat the �rst occurrence of X binds X to the �rst element of the list and theremaining occurrences reference the variable.8.2 Binding in SchemeIn Scheme the basic binding construct is the lambda-expression and bindingoccurs when a procedure is called, as in ((� (x) (* x x)) 3). Here the variablex is bound to 3 when the closure returned by evaluating the lambda-expression iscalled with 3. Scheme also has the binding constructs let, let* and letrec butthese are simply syntactic sugar for lambda-expressions and calls. For examplethe previous expression is equivalent to (let ((x 3)) (* x x)).

Erlang syntactic categories:hconsti: constanthubvari: unbound variablehbvari: bound variablehexp1i, hexp2i: arbitrary expressionshpat1i, hpat2i: arbitrary patternshfni: function nameExpression translation:E(hconsti; k) = (k C(hconsti))E(hbvari; k) = (k N(hbvari))E(hpat1i=hexp1i; k) = E(hexp1i; (� (v1) (P (hpat1i; (k v1); (erl-exit-badmatch)) v1)))E(hexp1i,hexp2i; k) = E(hexp1i; (� (v1) E(hexp2i; k)))E(hexp1i+hexp2i; k) = E(hexp1i; (� (v1) E(hexp2i; (� (v2) (k (erl-add v1 v2))))))E(hfni(hexp1i); k) = E(hexp1i; (� (v1) (k (N(hfni)/1 v1))))Pattern matching translation:P (hubvari; s; f) = (� (N(hubvari)) s)P (hbvari; s; f) = (� (v1) (if (erl-eq-object? v1 N(hbvari)) s f))P ([]; s; f) = (� (v1) (if (erl-nil? v1) s f))P ([hpat1i|hpat2i]; s; f) = (� (v1)(if (erl-cons? v1)(P (hpat1i; (P (hpat2i; s; f) (erl-tl v1)); f) (erl-hd v1))f))Auxiliary functions:C(const): translate an Erlang constant to SchemeN(name): translate an Erlang variable or function name to SchemeNote:vn stands for a freshly created variable which will not con
ict with other variables.Fig. 1. Simpli�ed translation algorithm for a subset of Erlang.8.3 Translation of Binding and Pattern MatchingTo translate an Erlang binding operation to Scheme it is necessary to nest theevaluation of the \rest of the function clause" inside the binding construct. Thiscan be achieved by performing a partial CPS conversion, as shown in Figure 1.The translation function E has two parameters: the Erlang expression totranslate (e) and a Scheme lambda-expression denoting the continuation whichreceives the result of the Erlang expression (k). E returns a Scheme expression.E makes use of the function P to translate pattern matching. P 's argumentsare: the pattern to match and the success and failure Scheme expressions. Preturns a one argument Scheme lambda-expression which pattern matches itsargument to the pattern, and returns the value of the success expression if thereis a match and returns the value of the failure expression otherwise.When an Erlang function is translated, E is called on each function clauseto translate the right hand side with the initial continuation (� (x) x) (i.e. theidentity function). Note that the continuation k and all lambda-expressions gen-erated in the translation are always inserted in the function position of a call.

This implies that in the resulting Scheme code all the lambda-expressions gener-ated can be expressed with the let binding construct (except for those generatedin the translation of functional objects, which is not shown). To correctly imple-ment tail-calls, an additional translation rule is used to eliminate applications ofthe identity function, i.e. ((� (x) x) Y)! Y .The translation algorithm is not a traditional CPS conversion because func-tion calls remain in direct style (i.e. translated Erlang functions do not take anadditional continuation argument). This partial CPS conversion is only used totranslate Erlang binding to Scheme binding. A remarkable property of functionE is that it embeds k in the scope of all Scheme bindings generated in the trans-lation of e. This is important because k may have free variables which mustresolve to variables bound in e. This is achieved by inserting k inside E(e; k)at a place where the variables are in scope. Similarly, P always embeds s (thesuccess expression) in the scope of all Scheme bindings generated. This is usefulto handle expressions such as Z=(X=1)+(Y=2), X+Y+Z which reference variablesbound inside previous expressions (here X and Y).Now consider the Erlang expression [X|Y]=foo:f(A), X+bar:g(Y). This istranslated to the following Scheme expression (if we assume that A is bound):(let ((v7 ^a))(let ((v5 (foo:f/1 v7)))(let ((v6 v5))(if (erl-cons? v6)(let ((^x (erl-hd v6)))(let ((^y (erl-tl v6)))(let ((v1 v5))(let ((v2 ^x))(let ((v4 ^y))(let ((v3 (bar:g/1 v4)))(erl-add v2 v3)))))))(erl-exit-badmatch)))))There are many useless bindings in this code. In the actual implementation, thetranslator keeps track of constants, bound variables and singly referenced expres-sions and propagates them to avoid useless bindings. With this improvement thecode generated is close to what we would expect a programmer to write:(let ((v5 (foo:f/1 ^a)))(if (erl-cons? v5)(erl-add (erl-hd v5) (bar:g/1 (erl-tl v5)))(erl-exit-badmatch))))))8.4 Translation of ConditionalsThe case, if, and receive constructs perform conditional evaluation. The caseconstruct evaluates an expression and �nds the �rst of a set of patterns whichmatches the result, and then evaluates the expression associated with that pat-tern. The receive construct is like case except that the object to be matched

is implicit (the next message in the process' mailbox), no error is signaled ifno pattern matches (it simply moves to the following message in a loop until amatch is found), and a timeout can be speci�ed. The if construct is a degen-erate case where each clause is only controlled by a boolean guard (no patternmatching is done).These conditional constructs must be handled carefully to avoid code dupli-cation. Consider this compound Erlang expression containing X*Y preceded bya case expression: case X of 1->Y=X*2; Z->Y=X+1 end, X*Y.This case expression will select one of the two bindings of Y based on thevalue of X. After the case, Y is a bound variable that can be referenced freely.On the other hand Z is not accessible after the case because it does not receivea value in all clauses of the case (it is an \unsafe" variable after the case).The case construct could be implemented by adding to the translation func-tion E a rule like Figure 2a. Note that the continuation k is inserted once in thegenerated code for each clause of the case. This leads to code duplication whichis a problem if the case is not the last expression in the function body and thecase has more than one clause. If the function body is a sequence of n binarycase expressions, some of the code will be duplicated 2n times.This code explosion can be avoided by factoring the continuation so that itappears only once in the generated code. A translation rule like Figure 2b wouldalmost work. The reason it is incorrect is that k is no longer nested in the scopeof the binding constructs generated for the case clauses, so the bindings theyintroduce are not visible in k.A correct implementation has to transfer these bindings to k. This can bedone by a partial lambda-lifting of k as shown in Figure 2c. The arguments ofthe lambda-lifted k (i.e. vk) are the result of the case (i.e. vr) and the set ofbound variables that are added by the clauses of the case and referenced in k(i.e. AV). Each clause of the case simply propagates these bindings to vk. AVcan be computed easily from the free variables (it is the di�erence between theset of free variables after the case and the set of free variables after the selectorexpression). The lambda-lifting is partial because vk may still have free variablesafter the transformation.This lambda-lifting could be avoided by using assignment. Dummy bindingsto the variables AV would be introduced just before the �rst pattern matchingoperation. Assignment would be used to set the value of these variables in theclauses of the case. This solution was rejected because many Scheme systemstreat assignment less e�ciently than binding (due to generational GC and theassignment conversion traditionally performed to implement call/cc correctly).In the actual implementation of the pattern matching constructs, the patternsare analyzed to detect common tests and factor them out so that they are onlyexecuted once (using a top-down, left-right pattern matching technique similarto [4]). For example the translation of the following case expression will onlycontain one test that X is a pair:case X of [1|Y]->...; [2|Z]->... end

E(case hexp0i ofhpat1i -> hexp1i;hpat2i -> hexp2iend ; k) =E(hexp0i; (� (v0)(P (hpat1i;E(hexp1i; k); ;;; duplication of k(P (hpat2i;E(hexp2i; k); ;;; duplication of k(erl-exit-case-clause))v0))v0)))a) Ine�cient translation of the case construct.E(case hexp0i ofhpat1i -> hexp1i;hpat2i -> hexp2iend ; k) =E(hexp0i; (� (v0)(let ((vk k)) ;;; k not in right scope(P (hpat1i;E(hexp1i; vk);(P (hpat2i;E(hexp2i; vk);(erl-exit-case-clause))v0))v0))))b) Incorrect translation of the case construct.E(case hexp0i ofhpat1i -> hexp1i;hpat2i -> hexp2iend ; k) =E(hexp0i; (� (v0)(let ((vk (� (vr AV...) (k vr))))(P (hpat1i;E(hexp1i; (� (vr) (vk vr AV...)));(P (hpat2i;E(hexp2i; (� (vr) (vk vr AV...)));(erl-exit-case-clause))v0))v0))))Where AV... is the set of bound variables that are added by the clauses of the caseand referenced in k. c) Correct translation of the case construct.Fig. 2. Translation of the case construct.9 Errors and catch/throwThe traditional way of performing non-local exits in Scheme is to use �rst-classcontinuations. A catch is translated to a call to Scheme's call/cc procedurewhich captures the current continuation. This \escape" continuation is storedin the process descriptor after saving the current escape continuation for whenthe catch returns. A throw simply calls the current escape continuation with its

argument. When control resumes at a catch (either because of a normal returnor a throw), the saved escape continuation is restored in the process descriptor.10 ConcurrencyFirst-class continuations are also used to implement concurrency. The state of aprocess is maintained in a process descriptor. Suspending a process is done bycalling call/cc to capture its current continuation and storing this continuationin the process descriptor. By simply calling a suspended process' continuation,the process will resume execution.Three queues of processes are maintained by the runtime system: the readyqueue (processes that are runnable), the waiting queue (processes that are hungat a receive, waiting for a new message to arrive in their mailbox), and thetimeout queue (processes which are hung at a receive with timeout). The time-out queue is a priority queue, ordered on the time of timeout, so that timeoutscan be processed e�ciently.There is no standard way in Scheme to deal with time and timer interrupts.To simulate preemptive scheduling the runtime system keeps track of the func-tion calls and causes a context switch every so many calls. When using theGambit-C Scheme system, which has primitives to install timer interrupt han-dlers, a context switch occurs at the end of the time slice, which is currently setto 100 msecs.11 Performance11.1 Benchmark ProgramsTo measure the performance of our compiler we have used mostly benchmarkprograms from other Erlang compilers. We have added two benchmarks (ringand stable) to measure the performance of messaging and processes.{ barnes (10 repetitions): Simulates gravitational force between 1000 bodies.{ fib (50 repetitions): Recursive computation of 30th Fibonacci number.{ huff (5000 repetitions): Compresses and uncompresses a 38 byte string withthe Hu�man encoder.{ length (100000 repetitions): Tail recursive function that returns the lengthof a 2000 element list.{ nrev (20000 repetitions): Naive reverse of a 100 element list.{ pseudoknot (3 repetitions): Floating-point intensive application taken frommolecular biology [13].{ qsort (50000 repetitions): Sorts 50 integers using the Quicksort algorithm.{ ring (100 repetitions): Creates a ring of 10 processes which pass around atoken 100000 times.{ smith (30 repetitions): Matches a DNA sequence of length 32 to 100 othersequences of length 32. Uses the Smith-Waterman algorithm.

{ stable (5000 repetitions): Solves the stable marriage problem concurrentlywith 10 men and 10 women. Creates 20 processes which send messages infairly random patterns.{ tak (1000 repetitions): Recursive integer arithmetic Takeuchi function. Cal-culates tak(18,12,6).11.2 Erlang CompilersEtos was coupled with the Gambit-C Scheme compiler version 2.7a [10]. We will�rst brie
y describe the Gambit-C compiler.The Gambit programming system combines an interpreter and a compilerfully compliant to R4RS and IEEE speci�cations. The Gambit-C compiler trans-lates Scheme programs to portable C code which can run on a wide variety ofplatforms. Gambit-C also supports some extensions to the Scheme standard suchas an interface to C which allows Scheme code to call C routines and vice versa.The Gambit-C compiler performs many optimizations, including automaticinlining of user procedures, allocation coalescing, and unboxing of temporary
oating point results. The compiler also emits instructions in the generated codeto check for stack over
ows and external events such as user or timer interrupts.The time between each check is bound by a small constant, which is useful toguarantee prompt handling of interprocess messages.Gambit-C includes a memory management system based on a stop and copygarbage collector which grows and shrinks the heap as the demands of the pro-grams change. The user can force a minimum and/or maximum heap size with acommand line argument. Scheme objects are encoded in a machine word (usually32 bits), where the lower two bits are the primary type tag. All heap allocatedobjects are pre�xed with a header which gives the length and secondary typeinformation of the object. Characters and strings are represented using the Uni-code character set (i.e. 16 bit characters). Floating point numbers are boxed andhave 64 bits of precision (like the other Erlang compilers used).The implementation of continuations uses an e�cient lazy copying strategysimilar to [15] but of a �ner granularity. Continuation frames are allocated in asmall area called the \stack cache". This area is managed like a stack (i.e. LIFOallocation) except when the call/cc procedure is called. All frames in the stackcache upon entry to call/cc can no longer be deallocated. When control returnsto such a frame, it is copied to the top of the stack cache. Finally, when thestack cache over
ows (because of repeated calls to call/cc or because of a deeprecursion), the garbage collector is called to move all reachable frames from thestack cache to the heap.We have compared Etos version 1.4 [9] with three other Erlang compilers:{ Hipe version 0.27 [17], an extension of the JAM bytecode compiler thatselectively compiles bytecodes to native code;{ BEAM/C version 4.5.2 [14], compiles Erlang code to C using a register ma-chine as intermediate;{ JAM version 4.4.1 [2], a bytecode compiler for a stack machine.

11.3 Execution TimeThe measurements were made on a Sun UltraSparc 143 MHz with 122 Mb ofmemory. Each benchmark program was run 5 times and the average was takenafter removing the best and worse times.The Scheme code generated by Etos is compiled with Gambit-C 2.7a andthe resulting C code is then compiled with gcc 2.7.2 using the option -O1. Theexecutable binary sets a �xed 10 Mb heap.Etos Time relative to EtosProgram (secs) Hipe BEAM/C JAMfib 31.50 1.15 1.98 8.33huff 9.74 1.48 5.01 24.81length 11.56 2.07 3.44 34.48smith 10.79 2.17 3.37 13.06tak 13.26 1.12 4.37 11.09barnes 9.18 2.08 { 4.07pseudoknot 16.75 2.37 { 3.18nrev 22.10 .84 1.83 10.98qsort 14.97 .96 3.88 15.38ring 129.68 .30 .31 1.92stable 21.27 1.16 .64 2.43Fig. 3. Execution time of benchmarksThe results are given in Figure 3. They show that Etos outperforms the otherErlang compilers on most benchmarks. If we subdivide the benchmarks accordingto the language features they stress, we can explain the results further:{ fib, huff, length, smith and tak, which are integer intensive programs,take advantage of the e�cient treatment of �xnum arithmetic in Gambit-Cand from the inlining of functions. Etos is up to two times faster than Hipe,5 times faster than BEAM/C, and 35 times faster than JAM.{ On the
oating point number benchmarks, barnes and pseudoknot, Etos isalso faster than the other Erlang implementations. In this case Etos is a littleover two times faster than Hipe. These programs crashed when compiled withBEAM/C.{ List processing is represented by nrev and qsort. On these programs Hipe isa little faster than Etos (4% to 16%), which is still roughly two to four timesfaster than BEAM/C. Etos' poor performance is only partly attributable toits implementation of lists:1. Gambit-C represents lists using 3 word long pairs as opposed to 2 wordson the other systems. Allocation is longer and the GC has more data tocopy.

2. Gambit-C guarantees that interrupts are checked at bound intervals [11]which is not the case for the other systems. For example, the code gen-erated by Gambit-C for the function app (the most time consumingfunction of the nrev benchmark) tests interrupts twice as often as Hipe(i.e. on function entry and return).3. The technique used by Gambit-C to implement proper tail-recursionin C imposes an overhead on function returns as well as calls betweenmodules. For nrev the overhead is high because most of the time is spentin a tight non-tail recursive function. Independent experiments [12] haveshown that this kind of program can be sped up by a factor of two tofour when native code is generated instead of C.{ Finally ring and stable manipulate processes. Here we see a divergencein the results. Hipe is roughly three times faster than Etos on ring. Etosperforms slightly better than Hipe on stable but is not as fast as BEAM/C.We suspect that our particular way of using call/cc to implement processes(and not the underlying call/cc mechanism) is the main reason for Etos'poor performance:1. When a process' mailbox is empty, a receive must call the runtimelibrary which then calls call/cc to suspend the process. These inter-module calls are rather expensive in Gambit-C. It would be better toinline the receive and call/cc.2. Scheme's interface to call/cc (which receives a closure, which will typ-ically have to be allocated, and must allocate a closure to representthe continuation) adds considerable overhead to the underlying call/ccmechanism which requires only a few instructions.12 Future WorkEtos 1.4 does not implement Erlang fully. Most notably, the following featuresof Erlang are not implemented:1. Macros, records, ports, and binaries.2. Process registry and dictionary.3. Dynamic code loading.4. Several built-in functions and libraries.5. Distribution (all Erlang processes must be running in a single user process).We plan to add these features and update the compiler so that it conformsto the upcoming Erlang 5.0 speci�cation.An interesting extension to Etos is to add library functions to access Gambit-C's C-interface from Erlang code. Interfacing Erlang, Scheme and C code willthen be easy.The Gambit-C side of the compilation can also be improved. In certain casesthe Scheme code generated by Etos could be compiled better by Gambit-C (itsoptimizations were tuned to the style of code Scheme programmers tend to

write). It is worth considering new optimizations and extensions speci�cally de-signed for Etos's output. In particular, a more e�cient interface to call/cc willbe designed. Moreover we think the performance of Etos will improve by a fac-tor of two on average when we start using a native code back-end for Gambit.We are also working on a hard real-time garbage collector and a generationalcollector to improve the response time for real-time applications.13 ConclusionsIt is unfortunate that inessential mismatches between Erlang and Scheme causemany small di�culties in the translation of Erlang to standard Scheme. Specif-ically the translation would be easier and more e�cient if Scheme: was case-sensitive, did not separate the numeric class (integer, ...) and exactness of num-bers, allowed testing the arity of procedures or a way to trap arity exceptions,had the ability to de�ne new data types, had a raw binary array data type, aforeign function interface and a more e�cient interface to call/cc. Fortunately,mature implementations of Scheme, and Gambit-C in particular, already includemany of these extensions to standard Scheme so in practice it is not a big prob-lem because such features can be accessed on an implementation speci�c basisby using a �le of macros tailored to the Scheme implementation.When coupled with Gambit-C, the Etos compiler shows promising results.It performs very well on integer and
oating point arithmetic, beating all othercurrently available implementations of Erlang. Its performance on list processingand process management is not as good but we think this can be improved ina number of ways. This is a remarkable achievement given that the front-endof the compiler was implemented in less than a month by a single person. Itshows that it is possible to quickly reuse existing compiler technology to build anew compiler and that a compiler with a deep translation pipeline (i.e. Erlang toScheme to C to machine code) need not be ine�cient. Of course Etos' success is toa great extent due to the fact that Scheme and Erlang o�er very similar features(data types, functional style, dynamic typing) and that Scheme's call/cc canbe used to simulate Erlang's escape methods and concurrency. Our work showsthat Scheme is well suited as a target for compiling Erlang.AcknowledgementsThis work was supported in part by grants from the Natural Sciences andEngineering Research Council of Canada and the Fonds pour la formation dechercheurs et l'aide �a la recherche.References1. J. L. Armstrong. The development of erlang. In Proceedings of the InternationalConference on Functional Programming, pages 196{203, Amsterdam, June 1997.

2. J. L. Armstrong, B. O. D�acker, S. R. Virding, and M. C. Williams. Implementinga functional language for highly parallel real-time applications. In Proceedings ofSoftware Engineering for Telecommunication Switching Systems, Florence, April1992.3. J. L. Armstrong, S. R. Virding, C. Wikstr�om, and M. C. Williams. ConcurrentProgramming in Erlang. Prentice Hall, second edition, 1996.4. Lennart Augustsson. Compiling Pattern Matching. In Jean-Pierre Jouannaud,editor, Conference on Functional Programming Languages and Computer Archi-tecture, Nancy, France, LNCS 201, pages 368{381. Springer Verlag, 1985.5. D. Boucher. Lalr-scm. Available at ftp.iro.umontreal.ca inpub/parallele/boucherd.6. W. Clinger. Proper Tail Recursion and Space E�ciency. In Proceedings of theConference on Programming Language Design and Implementation, pages 174{185,Montr�eal, June 1998. ACM Press.7. W. Clinger and J. Rees [editors]. Revised4 Report on the Algorithmic LanguageScheme. Lisp Pointers, 4(3):1{55, July-September 1991.8. D. Dub�e. SILex, user manual. Available at ftp.iro.umontreal.ca inpub/parallele.9. M. Feeley. Etos version 1.4. Compiler available at ftp.iro.umontreal.ca inpub/parallele/etos/etos-1.4.10. M. Feeley. Gambit-C version 2.7a, user manual. Compiler available atftp.iro.umontreal.ca in pub/parallele/gambit/gambit-2.7.11. M. Feeley. Polling e�ciently on stock hardware. In Proceedings of the FunctionalProgramming and Computer Architecture Conference, pages 179{187, Copenhagen,June 1993.12. M. Feeley, J. Miller, G. Rozas, and J. Wilson. Compiling Higher-Order Lan-guages into Fully Tail-Recursive Portable C. Technical Report 1078, D�epartementd'informatique et de recherche op�erationelle, Universit�e de Montr�eal, 1997.13. P. H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann, M. Beemster, E. Chail-loux, C. H. Flood, W. Grieskamp, J. H. G. Van Groningen, K. Hammond, B. Haus-man, M. Y. Ivory, R. E. Jones, J. Kamperman, P. Lee, X. Leroy, R. D. Lins,S. Loosemore, N. R�ojemo, M. Serrano, J.-P. Talpin, J. Thackray, S. Thomas,P. Walters, P. Weis, and P. Wentworth. Benchmarking implementations of func-tional languages with "Pseudoknot", a
oat-intensive benchmark. Journal of Func-tional Programming, 6(4):621{655, 1996.14. B. Hausman. Turbo Erlang: approaching the speed of C. In Evan Tick and Gian-carlo Succi, editors, Implementations of Logic Programming Systems, pages 119{135. Kluwer Academic Publishers, 1994.15. R. Hieb, R. K. Dybvig, and C. Bruggeman. Representing control in the presenceof �rst-class continuations. ACM SIGPLAN Notices, 25(6):66{77, 1990.16. IEEE Standard for the Scheme Programming Language. IEEE Standard 1178-1990, IEEE, New York, 1991.17. E. Johansson, C. Jonsson, T. Lindgren, J. Bevemyr, and H. Millroth. A pragmaticapproach to compilation of Erlang. UPMAIL Technical Report 136, Uppsala Uni-versity, Sweden, July 1997.18. The Internet Scheme Repository. http://www.cs.indiana.edu/scheme-repository.19. Gerald Jay Sussman and Guy Lewis Steele Jr. SCHEME, an interpreter for ex-tended lambda calculus. AI Memo 349, Mass. Inst. of Technology, Arti�cial Intel-ligence Laboratory, Cambridge, Mass., December 1975.

