A Better API for First-Class Continuations

Marc Feeley
Département d’informatique et recherche opérationnelle
Université de Montréal
http://www.iro.umontreal.ca/“feeley
(Short paper)

Abstract

Scheme’s call-with-current-continuation (call/cc) pro-
cedure reifies the implicit continuation into a procedure.
Calling this procedure causes this continuation to be in-
voked with the argument(s) as result(s). This approach is
consistent with the traditional representation of continua-
tions as functions in denotational semantics. This simple
interface is restrictive and inefficient. We propose the use of
an abstract data type to represent first-class continuations,
and motivate the operations it supports with applications in
search algorithms, exception handling, and debugging.

1 Introduction

We will motivate the need for a better API for first-class
continuations using a few sample programs.

1.1 Search with Exit

First-class continuations are sometimes used in search proce-
dures to abort the rest of the search when the desired item
is found. Assume we need to search a binary tree made
of pairs with leaves that are non-pairs. We want to find
the first leaf = in a left-to-right scan for which (pred z) is
true and return (process x), where pred and process are
parameters of the search procedure. The search procedure
indicates failure to find an appropriate leaf by returning a
special value. The following solution uses a recursive find
procedure which receives a continuation (abort) obtained
with call/cc to allow it to return from the search proce-
dure:

(define search
(lambda (tree pred process)
(call/cc
(lambda (abort)
(find tree pred process abort)))))

(define find
(lambda (tree pred process abort)
(if (pair? tree)
(begin
(find (car tree) pred process abort)
(find (cdr tree) pred process abort))
(if (pred tree)
(abort (process tree))
’could-not-find-it))))

Note that the first recursive call to find is not a tail-
call which means that when the appropriate leaf is found

the current continuation is the continuation of the call to
search to which has been added one continuation frame per
left branch in the path from the root to the leaf.

The code computes the correct result but unfortunately
it consumes more space for the continuation than is really
required. The problem is that the call (abort (process
tree)) only calls the abort continuation after the call (process
tree) returns, and it is only when the abort continuation is
called that the continuation frames created inside find will
all be reclaimed. This means that the call to process is not
a tail-call even if it appears to be a tail-call with respect
to search (in a sense they both have the same “continua-
tion”). This may be a serious problem if a loop is formed
by process tail-calling search.

A known trick to solve this problem, which we will call
“pop-and-call”, is to wrap an extra pair of parentheses around
the call/cc call:

(define search
(lambda (tree pred process)
((call/cc
(lambda (abort)
(find tree pred process abort))))))

and to thunkify the argument to the continuation in find:
(abort (lambda () (process tree))). So when the leaf is
found the abort continuation is immediately invoked, thus
reclaiming all the continuation frames, and process receives
exactly the same continuation as search.

The continuations created by a program form a tree,
with the primordial continuation of the program at its root.
When a procedure is called in non-tail position, the branch
of the tree corresponding to the current continuation is ex-
tended. When a procedure returns, the current continuation
moves to the frame one closer to the root. In this model
call/cc simply creates a reference to the current continu-
ation, and invoking a continuation moves the current con-
tinuation arbitrarily. In this tree metaphor, the operation
needed in the search example corresponds to grafting a new
branch. We want to move the continuation to a particular
point and then start a new branch by performing a proce-
dure call.

For the following examples we will abstract these con-
tinuation operations with three procedures, using the pop-
and-call trick for implementation:

(define continuation-capture
(lambda (receiver)
((call/cc receiver))))

(define continuation-graft
(lambda (cont thunk)
(cont thunk)))

(define continuation-return
(lambda (cont . returned-values)
(continuation-graft
cont
(lambda () (apply values returned-values)))))

Note that continuation-return allows any number of
values to be returned to a continuation.

1.2 Exception Handling and Dynamic Environments

The dynamic environment is a structure which allows the
system to find the value returned by current-input-port,
current-output-port, etc. The procedures with-input-
from-file, with-output-to-file, etc extend the dynamic
environment to produce a new dynamic environment which
is in effect for the dynamic extent of the call to the thunk
passed as the last argument. Some Scheme systems gener-
alize the dynamic environment by providing procedures and
special forms to define new dynamic variables and bind them
in the dynamic environment. For instance, Chez-Scheme
[Dyb98], MzScheme [F1a00], Larceny [HC00], Chicken [Win01]
and Gambit-C [FeeOla] have the procedure (make-parameter
initial-value) which creates a global dynamic variable and
returns a procedure to get and set the value of the vari-
able in whichever dynamic environment is current at the
time of the call, and the form (parameterize ((wvariable
new-value) ...) body) to bind the variable for the dynamic
extent of body’s evaluation.

Clearly there is an interaction between continuations and
dynamic environments. A reasonable model is to concep-
tually attach to each continuation the dynamic environ-
ment which was current when that continuation was created.
When the continuation is invoked the current dynamic en-
vironment is restored accordingly. The multithreading sup-
port SRFI [Fee0lb] mandates this model and introduces
an exception handling procedure based on it. An inter-
nal dynamic variable contains the current exception handler
procedure (a procedure that is called when an exception
is raised). The procedure call (with-exception-handler
handler thunk) binds the exception handler to handler for
the dynamic extent of the call to thunk.

Suppose we need to implement an exception handling
mechanism that models the try-catch-throw of Java. It
needs to capture the continuation of the try so that the
catch that processes a caught exception can be executed
with the same continuation as the try. If try’s contin-
uation was not restored the program would enter an infi-
nite loop if an exception is raised in the catch. Because
with-exception-handler binds the handler during the dy-
namic extent of the call to the thunk we need to exit this
dynamic extent when the exception is processed. The con-
tinuation grafting operation can thus be used to implement
a Java style exception handling mechanism:

(define try-catch
(lambda (catcher thunk)
(continuation-capture
(lambda (cont)
(with-exception-handler
(lambda (e) ; e = caught exception

(continuation-graft cont (lambda () (catcher e))))

(lambda ()
(let ((result (thunk)))
(lambda () result))))))))

This will not lead to an infinite loop:

(try-catch
(lambda (e)
(display "caught exception")
(/ 2 0)) ; second exception raised
(lambda ()
(display "computing 1/0")
(/ 1 0))) ; first exception raised

1.3 Debugger Evaluations

The need to perform a call within a specific continuation is
also useful for implementing debuggers in Scheme. Suppose
that a program encounters a divide-by-zero error in the ex-
pression (+ (/ x (f x)) 1) and this causes the program to
suspend its execution at the point of error and a read-eval-
print loop is presented to the user allowing her to evaluate
expressions to discover and repair the problem. In this par-
ticular case perhaps she wants to know what the value of “x”
and “(£f x)” are. It is useful for these evaluation requests to
be performed in the context of the error. For one thing we
want the lexical environment to be the same so that the ap-
propriate binding of “x” and “f” can be found. Let’s assume
this issue is solved. It is also important for the dynamic en-
vironment to be the same so that the evaluation of a call to
f can access the correct current output port, current excep-
tion handler, and any user introduced dynamic variable (if
the system has a user accessible dynamic variable binding
construct, such as “parameterize”). The debugger, which
has possibly extended or changed the dynamic environment
for its own needs (e.g. rebinding the current output port),
must return to the dynamic environment at the error point,
to evaluate the user supplied expression, and then return
to the dynamic environment of the debugger, for printing
the result. Continuation grafting can once again be used to
implement this:

(define /
(lambda (a b)
(if (=Db 0)

(debugger "divide-by-zero")
(* a (expt b -1)))))

(define debugger
(lambda (error-msg)
(continuation-capture
(lambda (there)
(with-input-from-port
(get-standard-input-port)
(lambda ()
(with-output-to-port
(get-standard-output-port)
(lambda ()
(display error-msg)
(let loop ()
(display "> ")
(let ((x (read))

(e (continuation-environment there)))

(write
(continuation-capture
(lambda (back)
(continuation-graft
there
(lambda ()
(continuation-return
back
(eval x €)))))))
(Loop)))NININI)

Note that it is important to use continuation-return
for returning to back so that eval is called in the correct

dynamic environment. Moreover, to pass the correct lex-
ical environment to eval, we have assumed the existence
of the procedure (continuation-environment cont) which
extracts the lexical environment of a continuation cont ob-
tained with continuation-capture. To allow optimizations
by the compiler this procedure may have to return a partial
environment (the precise semantics are beyond the scope of
this paper).

1.4 Debugger Continuation-Crawling

The pop-and-call trick is unfortunately not very modular.
The piece of code that captures the continuation and the
sites that invoke the continuation must know that the con-
tinuation is invoked in a special way. This problem is minor
in the above applications, but it is more severe when we
consider the previous debugger extended with the ability to
examine each frame in the continuation (to know the nest-
ing of the procedures that led to the error) and perform an
evaluation in any of these continuation frames.

A new procedure is needed to walk up the continuation,
for instance we could define (continuation-next cont) to

take a continuation cont obtained with continuation-capture

and return it with the top-most frame removed, or #f if it
only contains a single frame. Such a procedure can’t be im-
plemented with the pop-and-call trick because there is no
way to identify all possible points in the program (and run-
time library) that create continuation frames and insert a
call to continuation-capture.

2 Continuations Should be an Abstract Data Type

The procedure representation of continuations can only sup-
port a single operation: returning value(s) to the contin-
uation. To allow grafting and possibly other operations
on continuations (such as continuation-environment and
continuation-next and finding the procedure that created
a continuation for reporting the location of an error, etc) it
makes sense to introduce a distinct data type for continua-
tions and a set of operations on them. Not only is this more
flexible but it can be implemented more efficiently than the
procedure representation. The data type could be exactly
the continuation objects manipulated by the system thus
avoiding the space and time overheads of wrapping these
objects in closures.

Our proposal, which we plan to submit as a SRFI, will
contain at its core this set of primitives on the continuation
data type:

e (continuation-capture receiver) — creates a contin-
uation object representing the current continuation and
tail-calls the receiver procedure with this continuation
as the single argument.

o (continuation-graft cont thunk) — calls the thunk
with no argument and the implicit continuation cont.

e (continuation-return cont valuel...) —returnsthe
value(s) to the continuation cont (the definition given
above in terms of continuation-graft is still valid).

Note that call/cc can easily be implemented on top of
these primitives:

(define call/cc
(lambda (receiver)
(continuation-capture
(lambda (k)
(receiver (lambda returned-values
(apply continuation-return

returned-values)))))))

Of course the pop-and-call trick allows these primitives
to be simulated using call/cc, until introspective primitives
such as continuation-next are made available.

The main interest of these primitives in the short term
will be higher efficiency of continuation operations for sys-
tems that implement them natively (i.e. not with pop-and-
call). In addition to the space savings of continuation graft-
ing, the primitives avoid the creation of a closure by call/cc
and the indirection through this closure when the continu-
ation is restored. For the same reasons, it might make it
easier to teach first-class continuations with these primitives
(students are often lost in the tangle of procedures that are
involved when call/cc is used).

We also expect that the existence of these primitives will
pave the road for a wider range of introspective extensions
to Scheme, for example a SRFI with the features necessary
for implementing a portable debugger in Scheme or for com-
posing continuations.

Acknowledgements

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

References

[Dyb98] R. Kent Dybvig. Chez Scheme User’s Guide. Ca-
dence Research Systems, Bloomington, Indiana,
1998.

[FeeOla] Marc Feeley. Gambit-C version 4.0. To appear at
http://www.iro.umontreal.ca/~gambit, 2001.

[FeeO1b] Marc Feeley. SRFI-18: Multithreading sup-
port. Available at http://srfi.schemers.org/-
srfi-18/srfi-18.html, March 2001.

[Fla00] Matthew Flatt. PLT MzScheme: Language Man-
ual. Available at http://www.cs.rice.edu/CS/-

PLT/packages/doc/mzscheme/, August 2000.

[HC00] Lars T. Hansen and William D. Clinger.
Larceny User’s Manual. Available at http://-
www.ccs.neu.edu/home/1th/larceny/manual/,
September 2000.

[Win01] Felix L. Winkelmann. CHICKEN: A simple and
portable Scheme system - User’s manual. Avail-
able at http://www.call-with-current-cont-
inuation.org/manual.html, 2001.

