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her
he op�erationnelleUniversit�e de Montr�ealAbstra
tWe present a new near-real-time 
ompa
ting 
olle
tor andits implementation in a produ
tion quality S
heme 
om-piler (Gambit-C). Our goal is to use this system as a basefor an implementation of Erlang for writing soft real-timetele
ommuni
ation appli
ations. We start with a des
rip-tion of Gambit-C's memory organisation and its blo
king
olle
tor. The design and integration of the in
remental
olle
tor within Gambit-C are then explained. Finally wemeasure the performan
e of the in
remental 
olle
tor and
ompare it to the original blo
king 
olle
tor. We found thatthe overhead of the in
remental 
olle
tor is high (a fa
torof 1.3 to 8.1, with a median of 2.24) but nevertheless the
olle
tion pauses are 
ompatible with typi
al soft real-timerequirements (we get an average pause of 3.25 millise
ondsand a maximum pause of 18 millise
onds on a 133Mhz DECAlpha 21064).1 Introdu
tion

This is a revised version of the paper publishedin: Pro
eedings of the ACM SIGPLAN 1998International Symposium on Memory Management.The results have been updated after we fixed abug in the measurement software whi
h slightlyundervalued the pause time.

Garbage 
olle
tion (GC) frees the programmer from the te-dious and error-prone task of memory management, thusmaking the programming language higher-level. On unipro-
essors the work of the 
olle
tor is interleaved with that ofthe main program (the mutator). If ea
h par
el of GC is toolong, the 
olle
tor may adversely interfere with the exe
u-tion of the mutator whi
h be
omes unresponsive while the
olle
tor is working. This problem is espe
ially importantin real-time appli
ations (e.g. animations, real-time simula-tions and rea
tive systems) where the mutator is expe
tedto progress at a steady rate.In
remental 
olle
tors aim to diminish the disruptivenessof GC by spreading out the GC work into more uniformlydistributed par
els of smaller and bounded size. Be
ause in-
remental GC requires extra 
oordination between mutatorand 
olle
tor and higher 
onservatism, it is more expensivethan blo
king GC (where all of the dead obje
ts are re-
laimed every time the 
olle
tor is run). There is a widespa
e of tradeo�s between GC overhead and predi
tabilityin the design of an in
remental 
olle
tor but unfortunatelyit is hard to pi
k the best tradeo�s for a given appli
ation

be
ause there have been few experimental studies on whi
hto base a de
ision. We have designed a near-real-time in
re-mental 
ompa
ting 
olle
tor and implemented it in a pro-du
tion quality S
heme 
ompiler. This paper reports onthe various tradeo�s we made and the performan
e of the
olle
tor on a wide range of ben
hmarks.2 ContextThe work reported in this paper is part of a larger e�ortto implement a 
ompiler for Erlang [AVWW96℄, a 
on-
urrent mostly fun
tional programming language for real-time tele
ommuni
ation appli
ations developed at Eri
s-son. Our 
ompiler, 
alled Etos [FL98℄, �rst 
ompiles Erlangto S
heme and then uses the Gambit-C S
heme 
ompiler[FM90, FMRW97℄ to 
ompile the result into C. This ap-proa
h is reasonable and eÆ
ient be
ause S
heme and Er-lang share many similarities (e.g. use of fun
tional style,dynami
 typing, data types).The tele
ommuni
ation appli
ations targeted here arenot hard real-time appli
ations; it is permissible for an ap-pli
ation to be unresponsive for short periods of time (say10-50 millise
onds) as long as this is infrequent. An appli
a-tion will not fail if it is unresponsive for longer than this, itsquality of servi
e will simply degrade (for example 
onne
t-ing a telephone 
all to a destination must seem to be 
loseto instantaneous to the human 
aller but if it takes a fewse
onds all it will 
ause is a small amount of frustration).The average pause should be in the range 2-5 millise
ondsand at least 50% of the run time should be spent exe
ut-ing the mutator (assuming the 
ode is reasonably eÆ
ient,i.e. generated by an optimizing 
ompiler). These 
onstraintsare suÆ
ient to write in Erlang the 
ontrol software of anATM swit
h (su
h as the AXD301 [AXD98℄ whi
h aims topro
ess ea
h transa
tion within 7 millise
onds).To improve responsiveness we designed an in
remental
ompa
ting 
olle
tor for Gambit-C to repla
e the blo
king
olle
tor in the standard distribution. Given the appli
a-tion domain and use of a fun
tional programming style,we anti
ipated high allo
ation rates. Our in
remental 
ol-le
tor is a re�nement of Dub�e's 
olle
tor [Dub96, DFS96℄,an in
remental 
olle
tor developed for a small footprintinterpreter-based S
heme implementation for embedded 8bit 
ontrollers.



3 Gambit-C's Blo
king Colle
torGambit-C was designed to be a very portable 
ompiler (the
ode generated sti
ks to ANSI-C and uses few OS spe
i�
features) and to allow S
heme and C 
ode to be mixed inone appli
ation (S
heme obje
ts 
an be a

essed and allo-
ated from C 
ode and 
ontrol 
an jump from C to S
hemearbitrarily). The 
ompiler uses an RTL-style virtual ma-
hine 
ode (GVM [FM90℄) as an intermediate representationand then translates ea
h virtual instru
tion into the 
orre-sponding C 
ode (the 
on
ept of virtual ma
hine registersis important here be
ause they are roots of the 
olle
tor).For portability, the S
heme heap (whi
h 
ontains all the re-
laimable S
heme obje
ts) is allo
ated from the C heap byusing the mallo
 C library routine.3.1 The Sta
k-Ca
heIn order to properly handle tail-
alls (see [FMRW97℄ fordetails) and to provide eÆ
ient �rst-
lass 
ontinuations,Gambit-C allo
ates 
ontinuation frames in a 36 Kbyte sta
k-
a
he whi
h is separate from the C sta
k. When a deepre
ursion 
auses an over
ow of the sta
k-
a
he, the 
on-tinuation frames it 
ontains are transfered to the S
hemeheap thus allowing the re
ursion to 
ontinue. A 
ontin-uation frame is 
opied from the heap ba
k to the sta
k-
a
he when the sta
k-
a
he is emptied after a fun
tionreturn. When a 
ontinuation is 
aptured with a 
all to
all-with-
urrent-
ontinuation the base of the sta
k-
a
he is temporarily moved up so that any return to one ofthe 
aptured 
ontinuation frames will 
ause it to be 
opiedto the top of the sta
k-
a
he. This te
hnique is basi
ally thesame as [HDB90℄ but of a �ner granularity.3.2 Memory PartitioningThere are three allo
ation 
lasses for S
heme obje
ts:1. Movable: the obje
t may be moved by the 
olle
tor2. Still: the obje
t is never moved3. Permanent: the obje
t is never moved or re
laimedThe allure of still obje
ts is that C 
ode 
an easily manip-ulate them without worrying about their address suddenlybe
oming invalid after the 
olle
tor is run (a 
onservativeGC approa
h su
h as [BW88℄ is not an a

eptable solutionbe
ause it is not portable). Still obje
ts have a referen
e
ount �eld whi
h indi
ates how many referen
es from the\C world" exist to this obje
t (to prevent the 
olle
torfrom re
laiming them if they are not rea
hable from the\S
heme world"). Permanent obje
ts are useful for program
onstants (whi
h are nonmutable) and symbols (in
ludingdynami
ally 
reated ones). Most obje
ts dynami
ally allo-
ated by S
heme 
ode are movable obje
ts. Movable ob-je
ts are allo
ated eÆ
iently by in
rementing a free pointer.Within a basi
 blo
k, allo
ations of movable obje
ts are 
o-ales
ed and a single heap limit 
he
k is performed. Most
onstant-size allo
ation primitives (
ons, list and ve
torbut not make-ve
tor) are inlined by the 
ompiler. The 
om-piler also keeps 
oating point numbers in an unboxed statewithin ea
h basi
 blo
k, whi
h greatly redu
es the need forallo
ating 
onums (boxed 
oating point numbers) on some
oating-point intensive programs [HFA+96℄.

Gambit-C allows the S
heme heap to grow and shrink dy-nami
ally as the program's needs 
hange. For this reason,we opted not to implement the S
heme heap as one largeblo
k be
ause this would 
ause severe fragmentation giventhat C 
ode also allo
ates obje
ts in the C heap. Instead,a 
olle
tion of �xed size (512 Kbytes) non
ontiguous se
-tions is used to hold movable obje
ts. Ea
h movable obje
tse
tion is divided into equal size from-spa
e and to-spa
e.Still obje
ts are allo
ated dire
tly o� of the C heap usingmallo
. Large obje
ts (> 16 Kbytes) are always allo
atedas still obje
ts to avoid fragmenting the movable obje
t se
-tions. Permanent obje
ts are allo
ated stati
ally if they areprogram 
onstants or on the C heap if they are symbols.
movable object sections

still objects

from to from to

free
pointer

limit
pointer

C heap

Figure 1: Allo
ation of movable and still obje
ts in the Cheap.Figure 1 shows how the C heap is partitionned. When anallo
ation of a movable obje
t pushes the free pointer pastthe limit pointer, the free pointer is advan
ed to the nextmovable obje
t se
tion if one is free otherwise the 
olle
tor isrun. Note that there is a \fudge" spa
e (16 Kbytes) betweenthe limit pointer and the end of the from-spa
e. This is toa

omodate the runtime library whi
h sometimes needs toblindly allo
ate a bounded number of movable obje
ts with-out 
he
king the limit pointer until all obje
ts are allo
ated.The sta
k-
a
he also has a fudge spa
e (20 Kbytes).3.3 Obje
t RepresentationFigure 2 shows how movable obje
ts are represented. Ob-je
ts are aligned on a 4 byte boundary ex
ept for 
onumswhi
h are aligned on an 8 byte boundary. The two lowerbits of a pointer are used to en
ode a primary type infor-mation: 00 for �xnums (small exa
t integers), 10 for otherimmediates (
hara
ters, booleans, empty-list, et
.), 11 forpairs, 01 for other memory allo
ated obje
ts. The body ofall memory allo
ated obje
ts is pre�xed with a single wordheader whi
h 
ontains the following �elds: 24 bits for lengthof body in bytes, 5 bits for se
ondary type information (pair,ve
tor, string, et
.), 3 bits for an allo
ation 
lass tag (per-manent, still, movable-but-not-forwarded, and movable-and-forwarded whi
h 
ounts for 2 tags be
ause in this 
ase theheader 
ontains the forwarding pointer). Still obje
ts pre�xthe header with extra �elds to a

omodate the 
olle
tor (areferen
e 
ount and 2 links as explained below).
24 5 3

e
p
yt lass

length in bytes
c

header body (aligned on 4 or 8 byte boundary)Figure 2: Movable obje
t representation.



3.4 The Blo
king Colle
torGambit-C's blo
king 
olle
tor 
ombines the stop-and-
opyte
hnique (for movable obje
ts) and the mark-and-sweepte
hnique (for still obje
ts). Permanent obje
ts are nots
anned by the 
olle
tor be
ause they do not need to bere
laimed and 
an only 
ontain referen
es to permanent ob-je
ts.Still obje
ts are pla
ed on a linked list when allo
ated.This list is used at the start of the 
olle
tion to mark all thestill obje
ts whi
h have a nonzero referen
e 
ount, and at theend of the 
olle
tion to re
laim all unmarked still obje
ts (bya 
all to the free C library routine). A list of all markedbut not yet s
anned still obje
ts is also maintained by the
olle
tor (this explains why still obje
ts have 2 link �elds).The movable obje
ts are handled by a Cheney-style 
opy-ing algorithm [Che70℄ whi
h overwrites the header with theforwarding pointer. Control alternates between the stop-and-
opy and mark-and-sweep algorithms until the list of allmarked but not yet s
anned still obje
ts is empty and thereare no remaining movable obje
ts that have been 
opied toto-spa
e but have not yet been s
anned.The roots used by the 
olle
tor are:� the nonzero referen
e 
ount still obje
ts,� the S
heme global variables,� the virtual ma
hine registers,� the top part of the sta
k-
a
he (i.e. the 
on-tinuation frames in the 
urrent 
ontinuationthat have not been 
aptured by a 
all to
all-with-
urrent-
ontinuation)At the end of the 
olle
tion, the S
heme heap is resizedby allo
ating or re
laiming some movable obje
t se
tions.The default poli
y 
urrently used is to make the heap twi
ethe size of the spa
e o

upied by live obje
ts (for movableobje
ts the spa
e o

upied is multiplied by two be
ause thereis spa
e needed for the a
tual obje
t and its 
opy). The user
an 
on�gure the resizing ratio, as well as the minimum andmaximum heap size, when the program is laun
hed.4 Integrating the Colle
tor Into Gambit-CIn repla
ing Gambit-C's blo
king 
olle
tor with Dub�e's 
ol-le
tor [DFS96℄ we had two goals: adapt the 
olle
tor to aprodu
tion quality 
ompiler and measure the performan
eof the 
olle
tor in a realisti
 setting. This se
tion des
ribeshow Dub�e's 
olle
tor was modi�ed.Dub�e's 
olle
tor is a mark-and-
ompa
t 
olle
tor whi
h
ompa
ts by sliding obje
ts (the ordering of obje
ts in mem-ory is preserved). Dub�e's 
entral idea is the use of a non-movable handle whi
h points to a movable part. Thus areferen
e to a S
heme obje
t is en
oded as a tagged pointerto a one word handle whi
h 
ontains a pointer to the body ofthe movable obje
t. Be
ause of this indire
tion it is possibleto avoid an \update" pass to update all obje
t referen
es tothe new lo
ation of the obje
ts. This operation is a problemin a real-time setting be
ause the number of referen
es toupdate for a given obje
t is not bounded and therefore 
annot be done atomi
ally. However, an overhead is added tothe mutator for every a

ess to the obje
t. The overhead wemeasured is reported in Se
tion 5.Be
ause Gambit-C handles interrupts through polling[Fee93℄ and that polling points and heap limit 
he
ks 
an

only o

ur at the end of basi
-blo
s, it is possible to main-tain dire
t pointers to the movable part of obje
ts temporar-ily (for the duration of a basi
-blo
). This allows the indi-re
tion 
ost to be amortized over multiple a

esses to thesame obje
t, even in a multi-threaded 
ontext. However,the Gambit-C 
ompiler does not 
urrently exploit this pos-sibility.4.1 Memory PartitioningDub�e's 
olle
tor assumes a �xed size heap and that all ob-je
ts are movable. This simpli�es the memory partitioningbe
ause ea
h memory se
tion 
an be preallo
ated. Gambit-C however allows the S
heme heap to grow and shrink ondemand so a di�erent approa
h is needed.The memory partitioning is only slightly di�erent fromthe blo
king 
olle
tor. The three allo
ation 
lasses are main-tained and the movable obje
t se
tions are the same size.Be
ause 
ompa
tion is done by sliding obje
ts, the 
ompletesize of ea
h movable obje
t se
tion is used for allo
ation, notjust half.The allo
ation limit pointer is handled di�erently. In-stead of pointing 
lose to the end of the 
urrent movable ob-je
t se
tion, it initially points a 
onstant amount (G words)further than the allo
ation pointer. The mutator passes 
on-trol to the 
olle
tor when the allo
ation pointer 
rosses thislimit. When the 
olle
tor is done, it sets the limit pointerto G plus the allo
ation pointer, unless there isn't enoughspa
e in the 
urrent movable obje
t se
tion in whi
h 
asethe next se
tion is used. The value of G 
an be adjustedto 
ontrol the granularity (and thus overhead) of the 
on-text swit
hes between mutator and 
olle
tor and also the
olle
tor pause time (whi
h is roughly proportional to G asexplained below). A setting of G = 4096 words o�ers a good
ompromise between pause time and overhead, and is usedin our experiments.Handles are nonmovable and are thus allo
ated outsidethe movable obje
t se
tions in handle se
tions. Ea
h handlese
tion 
ontains the (worst-
ase) number of handles neededfor the obje
ts in one movable obje
t se
tion, i.e. 1/3 thesize of a movable obje
t se
tion. When a handle se
tionis allo
ated o� the C heap the handles in that se
tion arelinked together and added to the free handle list. This listshrinks and grows with the allo
ation and deallo
ation of themovable obje
ts. Handle se
tions are never freed sin
e theyare not tied dire
tly to a spe
i�
 movable obje
t se
tion butindividually to movable obje
ts. So there will be N handlese
tions if the maximum number of movable se
tions in thepast exe
ution is N . The S
heme heap size a

ounts for thehandle se
tions.4.2 The Marked Obje
t ListDub�e's 
olle
tor uses a main heap (whi
h is one 
ontiguousse
tion) for two purposes. Obje
ts are allo
ated at one endand a marking sta
k is maintained at the other end. Thissta
k holds pointers to all the obje
ts that have been markedbut not yet s
anned. Marking an obje
t adds it to the sta
kand s
anning an obje
t removes it from the top of the sta
k.The spa
e for one pointer is reserved on the sta
k on everyallo
ation (by in
rementing the marking sta
k limit whi
hseparates the area reserved for obje
ts from the area reservedfor the marking sta
k).We have implemented the marking sta
k by linking allobje
ts that have been marked but not yet s
anned into the



\marking list". This required adding a �eld (the mark �eld)to movable obje
ts whi
h is also used to en
ode the 
olor ofthe obje
t. When the 
olle
tor has not yet determined thatan obje
t is rea
hable its mark �eld is set to 0 (white). Afterbeing marked, the mark �eld 
ontains the address of the nextobje
t in the marking list or a spe
ial end of list marker(gray). Finally, when the obje
t is s
anned, it is deta
hedfrom the marking list and its �eld is set to -1 (bla
k). Notethat still obje
ts already have a mark �eld, so an extra �eldis not needed for them. The mark �eld is also used forhandling obje
t mutation (details below).4.3 New Obje
t RepresentationIn order to a

ess obje
ts in the same way regardless of theirallo
ation 
lass, all obje
ts are represented uniformly witha handle. For permanent obje
ts a spa
e for the handle isreserved before the header as in Figure 3. There is no needfor a mark �eld.
header

aligned bodyreference
object

handleFigure 3: Permanent obje
t representationFor still obje
ts several �elds 
ome before the header asshown in Figure 4: the mark �eld whi
h links still obje
ts,the handle, a referen
e 
ount, a link to the next still obje
t,and a length (whi
h is only needed for memory a

ount-ing purposes and be
ause Gambit-C supports operations toshrink the size of an obje
t whi
h is useful for implementingbignums and string ports).
header

aligned body

count
reference

reference
object

handle marklength linkFigure 4: Still obje
t representationThe allo
ation of a movable obje
t requires an allo
ationof a nonmovable handle from the free handle list and anallo
ation of the movable part in the 
urrent movable obje
tse
tion. Note that there is always enough handles for all themovable se
tions, so it is not ne
essary to 
he
k exhaustionof the free handle list. As shown in Figure 5, the movablepart has two more �elds than for the blo
king 
olle
tor:� Ba
k pointer: points ba
k to the 
orresponding han-dle. Needed in the 
ompa
ting phase of the 
olle
torto update or free the handle.� Mark: this links gray obje
ts, as explained above.The representation of movable obje
ts may seem spa
eineÆ
ient but it 
ompares advantageously to the blo
king
olle
tor whi
h has a hidden fa
tor of two for the spa
e re-served in to-spa
e. For a n word body, the representationfor the blo
king 
olle
tor is more spa
e eÆ
ient for n < 2(whi
h is rare) and less spa
e eÆ
ient for n > 2. For the fre-quent 
ase of pairs (n = 2), the representations are equallyspa
e eÆ
ient.

header

aligned body

handle

object
reference

in movable object sectionin handle section

pointer
back

markFigure 5: Movable obje
t representationNote that this obje
t representation allows testing the
olor of any 
lass of obje
t by reading the �eld just beforethe header. In the 
ase of a permanent obje
t, the 
olor willappear gray be
ause the handle is neither 0 or -1.4.4 The Colle
torThe 
olle
tor is 
alled on two types of events, when the allo-
ation limit is rea
hed and when the sta
k-
a
he over
ows.The 
olle
tor 
an be in one of 4 states 
orrespondingto ea
h phase of the 
olle
tion (mark roots, marking, pre-
ompa
tion, 
ompa
tion). A 
olle
tion 
y
le begins whenthe 
olle
tor enters the mark roots phase. The time allottedto the 
olle
tor for the next par
el of 
olle
tion is kept in aglobal variable of the 
olle
tor 
alled the word bank (detailsbelow). When this time is up, 
ontrol returns to the mutatorand the next time the 
olle
tor is 
alled it will resume in thesame phase.1. Mark roots phase. This phase is performed atomi-
ally (even though it doesn't need to be). It initializessome global variables of the 
olle
tor and marks theroots. The roots are the same as the blo
king 
olle
tor,ex
ept for the sta
k-
a
he. We observed that even forbig appli
ations the time needed for marking the rootsis small enough not to ex
eed our real-time 
onstraints.This is due to a limited number of global variables (theS
heme runtime library whi
h is present in all appli
a-tions 
ontains 1500 global variables and the Gambit-C
ompiler, our largest S
heme ben
hmark at 20000 lines,adds another 1500 variables to that).2. Marking phase. In this phase, the still obje
t andmovable obje
t marking lists are s
anned.3. Pre-
ompa
tion phase. This phase is performedatomi
ally. Ea
h time it is entered the roots andthe sta
k-
a
he are s
anned again be
ause the muta-tor might have stored referen
es to white obje
ts intothem while the 
olle
tor was in the marking phase. Theuse of a �xed size sta
k-
a
he bounds the amount ofwork to be done (on our test ma
hine this phase takesup to 3 millise
onds for the 
ompiler ben
hmark, androughly 1 millise
ond for the other ben
hmarks). Ifthis marks new obje
ts the 
olle
tor goes ba
k to themarking phase, otherwise the 
olle
tor will:(a) free the unmarked still obje
ts,(b) save a 
opy of the movable obje
t allo
ationpointer su
h that all movable obje
ts allo
atedbetween now and the end of the 
ompa
tion phasewill be 
onsidered bla
k regardless of their mark�eld (movable obje
ts are always allo
ated with 0(white) in the mark �eld)



4. Compa
tion phase. The last phase 
ompa
ts theheap. A 
opying pointer and a s
anning pointer are setto the base of the �rst movable obje
t se
tion. Ea
hobje
t in the movable obje
t se
tions is pro
essed inturn using the s
anning pointer. Unmarked obje
tsare 
olle
ted by transfering the 
orresponding handleto the free handle list. Marked obje
ts are 
opied tothe address indi
ated by the 
opying pointer and the
orresponding handle is updated.When the 
ompa
tion ends, the allo
ation pointer isset to the value of the 
opying pointer and the heap isresized (all the movable obje
ts retained are 
onsideredlive).If the 
olle
tor was 
alled due to a sta
k-
a
he over
ow,a sta
k 
olle
tion routine is �rst 
alled. Every frame in thesta
k-
a
he is 
opied to the S
heme heap, the word bank isupdated a

ording to the size of the frames, the sta
k-
a
heis emptied and the 
olle
tor is 
alled to 
ontinue normalpro
essing as explained above.4.5 Write BarrierWhen a referen
e to obje
t X is stored in obje
t Y , thesystem must ensure that the 
olle
tor will not negle
t tomark X if Y ends up marked when the 
ompa
tion phase isstarted (unless of 
ourse the referen
e to X in Y is overwrit-ten). This will not happen automati
ally if X is white andY is bla
k. We have experimented with two write barriersto handle this 
ase.1. Gray X. Here the white obje
t X is grayed by puttingit in the marking list. This is the original barrierproposed by Dub�e and is similar to Dijkstra's barrier[DLM+78℄.2. Gray Y . Here the bla
k obje
t Y is grayed by puttingit ba
k in the marking list. This is similar to Steele'sbarrier [Ste75℄. This is less 
onservative than graying X(i.e. X will possibly be re
laimed if the referen
e toX inY is overwritten). We reje
ted a more pre
ise barriermethod that only grays the lo
ation of the mutationusing a store list be
ause we want to keep a stri
t boundon heap size. This is a reasonable 
ompromise giventhat there are no mutation primitives in Erlang andS
heme programs are often mostly fun
tional.The write barrier is only used on heap allo
ated obje
tsby the primitives: ve
tor-set!, set-
ar!, set-
dr! and
ell-set! (whi
h is used for assignments to lo
al variables).There is no barrier on the roots (the virtual registers, thesta
k-
a
he and the global variables) whi
h are s
anned inthe pre-
ompa
tion phase of the 
olle
tor. This eliminatesthe need for prote
ting S
heme's set! operation on globalvariables.The pseudo
ode for the ve
tor-set! primitive, in
lud-ing a \gray X" write barrier, is shown in Figure 6 (the othermutation primitives are similar). The pro
edure gray(val)adds obje
t val to the head of the marking list.Long obje
ts are s
anned in
rementally to bound 
olle
-tor pauses. In the marking phase, the 
olle
tor s
ans longobje
ts in small segments and a pointer to the uns
annedregion is saved when 
ontrol returns to the mutator. Con-sequently, when the \gray Y " barrier is used, mutation ofa still ve
tor obje
t must 
he
k if the mutation is in the

ve
tor_set(ve
t, index, val):if memory_allo
ated(val) and g
_phase!=
ompa
tionand bla
k(ve
t) and white(val) then gray(val)ve
t[index℄ = valFigure 6: Pseudo
ode for the ve
tor-set! primitive andwrite barrier.s
anned region, in whi
h 
ase the 
olle
tor must res
an itfrom the beginning in the next par
el of 
olle
tion. This isnot a perfe
t solution in general be
ause the 
olle
tor 
ouldget stalled on marking ve
tor V if the mutator repeatedlymutates the beginning of V (this 
ould lead to the heapover
owing). Fortunately, in the 
ontext of an Erlang sys-tem this is not a problem be
ause we 
an write the runtimesystem in su
h a way that mutations are always performedon small ve
tors.4.6 Par
eling Out Colle
tion WorkThe following analysis applies to the \gray X" write barrierand to the \gray Y " write barrier with no mutation to longobje
ts. We will make use of the following de�nitions:� H is the size of the heap (in words).� Ri is the proportion of the heap o

upied by obje
tsretained by the 
olle
tor at the end of 
olle
tion 
y
lenumber i.� Wtotal is the total amount of work for one 
olle
tion
y
le in number of words to mark and to 
ompa
t.� W is the amount of work in a par
el of 
olle
tion.� B is the value of the word bank.The marking phase will tou
h at most HRi words worthof obje
ts and the 
ompa
ting phase H words, so Wtotal �H(1 +Ri). This work is spread over the allo
ation of H(1�Ri�1) words by the mutator. So, if the 
olle
tor tou
hes Cwords per word allo
ated by the mutator, then the 
olle
tion
y
le will end before the mutator exhausts the free spa
e aslong as C � WtotalH(1�Ri�1) � 1+Ri1�Ri�1 .We use the setting C = 5+3L2(1�L) , where L is 
hosen atprogram laun
h and is an upper bound on the proportion ofthe heap o

upied by live obje
ts. Figure 7 gives a plot ofthis fun
tion.
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This setting of C ensures that the 
olle
tion 
y
le willend before the mutator exhausts the free spa
e when Ri�1 �1+L2 . Moreover, it guarantees thatRi � 1+L2 . This is easy toprove by indu
tion (see [DFS96℄ for a proof). An interesting
orollary is that the 
olle
tor 
an stay idle at the start ofthe 
olle
tion 
y
le until the mutator has allo
ated enoughobje
ts to make the heap o

upied to 1+L2 . By staying idlein this way, the 
olle
tor will be less 
onservative and thusmore eÆ
ient at re
laiming garbage.The word bank is used in par
eling the 
olle
tion work.At the start of 
olle
tion 
y
le i, B is set to the negativevalue �H( 1+L2 � Ri�1) so that the 
olle
tor will stay idleat the start of the 
olle
tion 
y
le. When the heap limit is
rossed and when the sta
k-
a
he over
ows, the number ofwords allo
ated (still and movable obje
ts) is added to B.Thus, in the typi
al 
ase (heap limit rea
hed) B in
reasesin steps of G.If B is negative, the 
olle
tor returns immediately tothe mutator. Otherwise, the amount of 
olle
tion work is
al
ulated based on B and C (i.e. W = BC), the 
olle
torperforms W words worth of 
olle
tion, sets B to 0 and thenreturns to the mutator.5 ResultsTo measure the performan
e of our in
remental 
olle
tor weused a set of 20 S
heme ben
hmarks. In all 
ases the pro-grams were 
ompiled with the Gambit-C 2.7 
ompiler usingthe de
larations whi
h gave the fastest exe
ution (inlining ofprimitives, �xnum or 
onum spe
i�
 arithmeti
, no runtimetype 
he
ks). The short running programs were modi�edto repeat the 
omputation several times so that the totalexe
ution time would be at least 5 se
onds.A �rst group of programs 
omes from the Gabriel ben
h-mark suite [Gab85℄. These programs are mostly kernelswhi
h stress spe
i�
 features of the system (�xnum arith-meti
, allo
ation, traversal, mutation, re
ursion, iteration).Some of these ben
hmarks don't perform any allo
ation sowe ignored them (tak, takl, triangle, and the traversalphase of traverse). The se
ond group 
onsists of 
oating-point intensive programs: fibfp, sumfp, mbrot, fft, andsimplex. The third group 
ontains larger appli
ations whi
hmix various types of symboli
 pro
essing, in
luding lots of al-lo
ations, obje
t mutations and traversal of data-stru
tures:
onform (type 
he
ker, 700 lines), peval (partial evalua-tor, 800 lines), earley (parser, 800 lines), maze (
onstru
ta maze, 900 lines), and 
ompiler (Gambit-C S
heme 
om-piler, 20000 lines).All ben
hmarks were run on an unloaded 160Mbyte133Mhz DEC Alpha 21064 running Digital UNIX V4.0.CPU time statisti
s were measured with the C library rou-tine getrusage whi
h has a 1 millise
ond resolution. We
onsidered using the gettimeofday routine to measure timedown to the mi
rose
ond but sin
e it measures real-timesome of the short duration statisti
s measured (su
h as themaximum 
olle
tor pause) are too easily perturbed by OS
ontext swit
hes over whi
h we have no 
ontrol. Ea
h ben
h-mark was run on
e. All times are given in se
onds.To redu
e the importan
e of di�eren
es in the memorypartitioning of the di�erent 
olle
tors, all programs wererun with a �xed-size heap of 12Mbytes. This also avoidedunexpe
tedly long 
olle
tor pauses when resizing the heap (itseems that 
alls to mallo
/free for large blo
ks sometimestakes over 10 millise
onds!).

5.1 Overhead of In
remental Colle
tionOur �rst goal is to measure the total overhead of using an in-
remental 
olle
tor rather than a blo
king 
olle
tor in a pro-du
tion quality 
ompiler su
h as Gambit-C. Also, we wishto �nd the overhead asso
iated with performing the 
olle
-tion in
rementally. For this purpose the programs were runwith three di�erent 
olle
tors:1. S&C: this is the blo
king 
olle
tor in the standardGambit-C distribution.2. M&C: this is our 
olle
tor when run as a blo
king
olle
tor (i.e. the 
olle
tion is done 
ompletely whenthe heap is full and there is no write barrier). A sta
k-
a
he over
ow 
auses a full 
olle
tion (whi
h is what isdone by S&C).3. M&C R-T: this is the full in
remental 
olle
tor de-s
ribed in this paper, using a value of L = 50%.The results are reported in Figure 8. The �rst 
olumngives the allo
ation rate of the program in Mbytes per se
ondwhen run with S&C. The se
ond 
olumn gives the exe
utiontime in se
onds for S&C. The exe
ution time for the other
olle
tors is expressed relative to the time for S&C so thatthe overhead with respe
t to S&C stands out more 
learly.The M&C R-T 
olle
tor was run with ea
h type of writebarrier. Note that the results are ordered a

ording to theoverhead of M&C R-T with the \gray X" barrier.Allo
 S&C M&C M&C R-TMB/se
 gray X gray Yboyer 3.14 16.46 .91 .92 .96puzzle .92 21.88 1.20 1.30 1.41
ompiler .91 49.99 1.19 1.31 2.52fft 12.58 5.05 1.53 1.56 1.58traverse 5.61 10.93 1.37 1.67 2.01browse 3.95 33.36 1.25 1.73 2.46peval 5.86 35.40 1.52 1.81 3.16
onform 2.88 25.52 1.29 1.85 2.60simplex 15.34 10.91 1.70 2.10 2.32earley 8.42 36.13 1.87 2.24 3.02
pstak 46.94 13.95 2.41 2.44 2.46maze 16.18 11.58 1.65 2.46 2.53destru
 19.35 15.29 2.11 2.78 3.70deriv 27.43 32.69 2.50 2.92 4.08fibfp 47.05 11.80 2.43 2.94 2.96dderiv 22.76 39.39 2.04 2.98 4.17mbrot 60.20 13.03 2.87 3.62 3.64divre
 54.92 16.66 3.15 3.83 3.77sumfp 71.12 85.82 3.21 4.24 4.26diviter 123.03 7.44 6.51 8.09 8.04Figure 8: Exe
ution time with ea
h 
olle
tor (S&C in se
-onds and others relative to S&C).For the M&C 
olle
tor the overhead in
ludes: allo
ationof handles, indire
tion 
ost when a

essing a memory allo-
ated obje
t and di�eren
e in 
olle
tion algorithms. If weignore boyer, the overheads range from 1.19 to 6.51, witha median of 1.7. We 
an see that the overhead is roughly
orrelated to the allo
ation rate. This is reasonable be
auseobje
t allo
ation is signi�
antly more expensive than the



simple pointer in
rement performed for S&C and all ob-je
ts allo
ated in
luding dead ones need to be pro
essed inthe 
ompa
tion phase. The highest overhead is for diviterwhi
h spends most of its time in a tight loop performing 3 a
-
esses to pairs and 1 allo
ation of a pair whi
h is soon dead.An anomaly exists for boyer whi
h is slowest of all whenusing S&C be
ause the mutator and 
olle
tor are in syn
h(the pro�le of live obje
ts is like a sawtooth, going from50Kbytes to 1400Kbytes, and with a 12Mbyte heap S&Calways 
olle
ts at moments of peak live obje
ts whereas theother 
olle
tors do it at uniformly distributed levels, whi
his more eÆ
ient).When the allo
ation rate is low the overhead dependsmore on the handle indire
tion 
ost and the di�eren
e in
olle
tion algorithms. It is interesting to see that a 
omplexappli
ation like 
ompiler has a low overhead of 1.19. Weattribute this to the fa
t that its modular design 
auses a lotof time to be spent in pro
edure 
alls and returns betweenmodules (whi
h is una�e
ted by the 
olle
tor but is ratherslow in Gambit-C due to the tail-
all support), that it wasdesigned to minimize the 
reation of garbage and that itperforms I/O.The M&C R-T 
olle
tor with \gray X" barrier has over-heads in the range 1.3 to 8.09, with a median of 2.24. Theoverheads follow the same trend as the blo
king M&C 
olle
-tor, and are a median fa
tor of 1.21 higher with a maximumof 1.5 times higher for maze. So the transition from M&Cto M&C R-T has a lower overhead than the transition fromS&C to M&C (in other words most of the overhead of our in-
remental 
olle
tor is not in the \in
rementality" but ratherin the use of a 
ompa
ting 
olle
tor with handles).If we only 
onsider the ben
hmarks whi
h perform muta-tions on obje
ts, the \gray X" barrier is always faster thanthe \gray Y " barrier, by a median fa
tor of 1.35 and a max-imum of 1.9 times faster for 
ompiler. Our explanation isthat the \gray Y " barrier may 
ause obje
ts to be markedmultiple times and this extra 
ost outweighs the bene�t oflower 
onservatism.5.2 Colle
tion PausesAnother important aspe
t to measure is the duration of thepauses of the in
remental 
olle
tor. The average pause isof 
ourse interesting but given the 
ontext of soft real-timeappli
ations, it is also important to know what is the maxi-mum pause and also the per
entage of total exe
ution timespent in the 
olle
tor (%GC). Figure 9 gives these measure-ments ordered a

ording to %GC when using the \gray X"barrier.The average pause is in the range 2.42 to 4.37 millise
-onds, with a median of 3.25 millise
onds. The maximumpause is in the range 6 to 18 millise
onds, with a median of8 millise
onds. The %GC is in the range 4% to 57%, witha median of 22%. These measurements are 
ompatible withour real-time 
onstraints.The programs with the highest %GC are those whi
hhave high allo
ation rates and few live obje
ts (the top 3are 
oating point intensive programs whi
h stri
tly allo
ate
onums). In this situation the 
olle
tor will spend a largefra
tion of its time 
ompa
ting bla
k obje
ts that are in fa
tgarbage. So for most obje
ts allo
ated there are two asso-
iated 
ompa
tions needed (be
ause during the 
ompa
tionphase obje
ts are allo
ated bla
k).Finally, Figure 10 shows the distribution of pause times.The X axis gives pause time in se
onds and the extent of

Avg Max %GC
ompiler .00437 .012 4puzzle .00242 .010 4
onform .00325 .010 5peval .00299 .008 8browse .00319 .010 10boyer .00364 .009 12trav1 .00397 .014 15simplex .00336 .008 20destru
 .00319 .007 21earley .00394 .012 22dderiv .00321 .007 24fft .00370 .008 24deriv .00318 .007 29maze .00371 .018 35
pstak .00266 .006 40divre
 .00323 .007 45diviter .00323 .007 48fibfp .00370 .008 52mbrot .00375 .007 55sumfp .00385 .007 57Figure 9: Average and maximum 
olle
tor pause in se
ondsand per
ent of time spent in 
olle
tor.the X axis indi
ates the maximum 
olle
tor pause. As 
anbe seen, the distribution is 
ompa
t around the average andthere are no distant outliers.5.3 Dis
ussionAt �rst glan
e the overhead of the in
remental 
olle
torseems too high for pra
ti
al use. However this overheadmust be put in perspe
tive. Erlang programs 
ompiled withEtos and Gambit-C 2.7 with the S&C 
olle
tor are roughly15 times faster than with the JAM 4.4.1 byte
ode imple-mentation of Erlang [FL98℄. Even if a program using thein
remental 
olle
tor is slowed down by a fa
tor of 2.24 
om-pared to the S&C 
olle
tor, the program is still over 6 timesfaster than when using JAM.Of 
ourse the overhead and pause time that is tolera-ble depends on the appli
ation. However, it is reassuringthat the measurements we have made on our 
olle
tor �tvery 
losely with the requirements of soft real-time tele
om-muni
ation appli
ations (2-5 millise
ond average pause and10-50 millise
ond maximum pause). Note also that our testma
hine (133Mhz DEC Alpha 21064) is more than 5 yearsold at this writing and that mu
h faster mi
ropro
essors arereadily available. When exe
uted on a now 
urrent 500MhzDEC Alpha 21164A the 
ompiler ben
hmark ran 6.7 timesfaster and the 
olle
tor was about 3.5 times faster (
olle
-tion pauses were 1 millise
ond on average with a maximumpause of 3 millise
onds).6 Future Work and Con
lusionBe
ause of the way the word bank is handled, the 
olle
-tor only starts 
olle
ting after the mutator has allo
ated afair amount (i.e. until the word bank be
omes positive). Itwould be interesting to investigate if by starting the 
olle
torearlier we 
ould redu
e the 
olle
tion overhead and lengthof pauses (it isn't 
lear that this is good be
ause the 
olle
-tor will be more 
onservative, retaining some obje
ts that
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would have died). A dynami
 
al
ulation of L also seemsne
essary, sin
e it would allow the 
olle
tor to adapt to thebehavior of the appli
ation.There is also a need for testing the 
olle
tor with softreal-time Erlang appli
ations. This will have to wait untilEtos is 
omplete and robust.On
e Dub�e's 
olle
tor is fully integrated into Gambit-C, we plan to integrate other near real-time 
olle
tors (inparti
ular [NO93℄ whi
h seems well suited to our 
ontext)and 
ompare their performan
e.As our experimental results show, the in
remental 
ol-le
tor is able to meet the maximum and average pause time
onstraints needed by tele
ommuni
ation appli
ations. Theoverhead of the in
remental 
olle
tor with respe
t to a blo
k-ing 
olle
tor is rather high (a fa
tor of 1.3 to 8.1) but, giventhat we are working in the 
ontext of an optimizing 
ompiler,the 
ompute power left for the mutator 
ompares favorablywith a byte
ode implementation of Erlang.A
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