
A Compa
ting In
remental Colle
tor and its Performan
e in a Produ
tionQuality CompilerMartin Larose and Mar
 Feeleyflarosem,feeleyg�iro.umontreal.
aD�epartement d'informatique et re
her
he op�erationnelleUniversit�e de Montr�ealAbstra
tWe present a new near-real-time
ompa
ting
olle
tor andits implementation in a produ
tion quality S
heme
om-piler (Gambit-C). Our goal is to use this system as a basefor an implementation of Erlang for writing soft real-timetele
ommuni
ation appli
ations. We start with a des
rip-tion of Gambit-C's memory organisation and its blo
king
olle
tor. The design and integration of the in
remental
olle
tor within Gambit-C are then explained. Finally wemeasure the performan
e of the in
remental
olle
tor and
ompare it to the original blo
king
olle
tor. We found thatthe overhead of the in
remental
olle
tor is high (a fa
torof 1.3 to 8.1, with a median of 2.24) but nevertheless the
olle
tion pauses are
ompatible with typi
al soft real-timerequirements (we get an average pause of 3.25 millise
ondsand a maximum pause of 18 millise
onds on a 133Mhz DECAlpha 21064).1 Introdu
tion

This is a revised version of the paper publishedin: Pro
eedings of the ACM SIGPLAN 1998International Symposium on Memory Management.The results have been updated after we fixed abug in the measurement software whi
h slightlyundervalued the pause time.

Garbage
olle
tion (GC) frees the programmer from the te-dious and error-prone task of memory management, thusmaking the programming language higher-level. On unipro-
essors the work of the
olle
tor is interleaved with that ofthe main program (the mutator). If ea
h par
el of GC is toolong, the
olle
tor may adversely interfere with the exe
u-tion of the mutator whi
h be
omes unresponsive while the
olle
tor is working. This problem is espe
ially importantin real-time appli
ations (e.g. animations, real-time simula-tions and rea
tive systems) where the mutator is expe
tedto progress at a steady rate.In
remental
olle
tors aim to diminish the disruptivenessof GC by spreading out the GC work into more uniformlydistributed par
els of smaller and bounded size. Be
ause in-
remental GC requires extra
oordination between mutatorand
olle
tor and higher
onservatism, it is more expensivethan blo
king GC (where all of the dead obje
ts are re-
laimed every time the
olle
tor is run). There is a widespa
e of tradeo�s between GC overhead and predi
tabilityin the design of an in
remental
olle
tor but unfortunatelyit is hard to pi
k the best tradeo�s for a given appli
ation

be
ause there have been few experimental studies on whi
hto base a de
ision. We have designed a near-real-time in
re-mental
ompa
ting
olle
tor and implemented it in a pro-du
tion quality S
heme
ompiler. This paper reports onthe various tradeo�s we made and the performan
e of the
olle
tor on a wide range of ben
hmarks.2 ContextThe work reported in this paper is part of a larger e�ortto implement a
ompiler for Erlang [AVWW96℄, a
on-
urrent mostly fun
tional programming language for real-time tele
ommuni
ation appli
ations developed at Eri
s-son. Our
ompiler,
alled Etos [FL98℄, �rst
ompiles Erlangto S
heme and then uses the Gambit-C S
heme
ompiler[FM90, FMRW97℄ to
ompile the result into C. This ap-proa
h is reasonable and eÆ
ient be
ause S
heme and Er-lang share many similarities (e.g. use of fun
tional style,dynami
 typing, data types).The tele
ommuni
ation appli
ations targeted here arenot hard real-time appli
ations; it is permissible for an ap-pli
ation to be unresponsive for short periods of time (say10-50 millise
onds) as long as this is infrequent. An appli
a-tion will not fail if it is unresponsive for longer than this, itsquality of servi
e will simply degrade (for example
onne
t-ing a telephone
all to a destination must seem to be
loseto instantaneous to the human
aller but if it takes a fewse
onds all it will
ause is a small amount of frustration).The average pause should be in the range 2-5 millise
ondsand at least 50% of the run time should be spent exe
ut-ing the mutator (assuming the
ode is reasonably eÆ
ient,i.e. generated by an optimizing
ompiler). These
onstraintsare suÆ
ient to write in Erlang the
ontrol software of anATM swit
h (su
h as the AXD301 [AXD98℄ whi
h aims topro
ess ea
h transa
tion within 7 millise
onds).To improve responsiveness we designed an in
remental
ompa
ting
olle
tor for Gambit-C to repla
e the blo
king
olle
tor in the standard distribution. Given the appli
a-tion domain and use of a fun
tional programming style,we anti
ipated high allo
ation rates. Our in
remental
ol-le
tor is a re�nement of Dub�e's
olle
tor [Dub96, DFS96℄,an in
remental
olle
tor developed for a small footprintinterpreter-based S
heme implementation for embedded 8bit
ontrollers.

3 Gambit-C's Blo
king Colle
torGambit-C was designed to be a very portable
ompiler (the
ode generated sti
ks to ANSI-C and uses few OS spe
i�
features) and to allow S
heme and C
ode to be mixed inone appli
ation (S
heme obje
ts
an be a

essed and allo-
ated from C
ode and
ontrol
an jump from C to S
hemearbitrarily). The
ompiler uses an RTL-style virtual ma-
hine
ode (GVM [FM90℄) as an intermediate representationand then translates ea
h virtual instru
tion into the
orre-sponding C
ode (the
on
ept of virtual ma
hine registersis important here be
ause they are roots of the
olle
tor).For portability, the S
heme heap (whi
h
ontains all the re-
laimable S
heme obje
ts) is allo
ated from the C heap byusing the mallo
 C library routine.3.1 The Sta
k-Ca
heIn order to properly handle tail-
alls (see [FMRW97℄ fordetails) and to provide eÆ
ient �rst-
lass
ontinuations,Gambit-C allo
ates
ontinuation frames in a 36 Kbyte sta
k-
a
he whi
h is separate from the C sta
k. When a deepre
ursion
auses an over
ow of the sta
k-
a
he, the
on-tinuation frames it
ontains are transfered to the S
hemeheap thus allowing the re
ursion to
ontinue. A
ontin-uation frame is
opied from the heap ba
k to the sta
k-
a
he when the sta
k-
a
he is emptied after a fun
tionreturn. When a
ontinuation is
aptured with a
all to
all-with-
urrent-
ontinuation the base of the sta
k-
a
he is temporarily moved up so that any return to one ofthe
aptured
ontinuation frames will
ause it to be
opiedto the top of the sta
k-
a
he. This te
hnique is basi
ally thesame as [HDB90℄ but of a �ner granularity.3.2 Memory PartitioningThere are three allo
ation
lasses for S
heme obje
ts:1. Movable: the obje
t may be moved by the
olle
tor2. Still: the obje
t is never moved3. Permanent: the obje
t is never moved or re
laimedThe allure of still obje
ts is that C
ode
an easily manip-ulate them without worrying about their address suddenlybe
oming invalid after the
olle
tor is run (a
onservativeGC approa
h su
h as [BW88℄ is not an a

eptable solutionbe
ause it is not portable). Still obje
ts have a referen
e
ount �eld whi
h indi
ates how many referen
es from the\C world" exist to this obje
t (to prevent the
olle
torfrom re
laiming them if they are not rea
hable from the\S
heme world"). Permanent obje
ts are useful for program
onstants (whi
h are nonmutable) and symbols (in
ludingdynami
ally
reated ones). Most obje
ts dynami
ally allo-
ated by S
heme
ode are movable obje
ts. Movable ob-je
ts are allo
ated eÆ
iently by in
rementing a free pointer.Within a basi
 blo
k, allo
ations of movable obje
ts are
o-ales
ed and a single heap limit
he
k is performed. Most
onstant-size allo
ation primitives (
ons, list and ve
torbut not make-ve
tor) are inlined by the
ompiler. The
om-piler also keeps
oating point numbers in an unboxed statewithin ea
h basi
 blo
k, whi
h greatly redu
es the need forallo
ating
onums (boxed
oating point numbers) on some
oating-point intensive programs [HFA+96℄.

Gambit-C allows the S
heme heap to grow and shrink dy-nami
ally as the program's needs
hange. For this reason,we opted not to implement the S
heme heap as one largeblo
k be
ause this would
ause severe fragmentation giventhat C
ode also allo
ates obje
ts in the C heap. Instead,a
olle
tion of �xed size (512 Kbytes) non
ontiguous se
-tions is used to hold movable obje
ts. Ea
h movable obje
tse
tion is divided into equal size from-spa
e and to-spa
e.Still obje
ts are allo
ated dire
tly o� of the C heap usingmallo
. Large obje
ts (> 16 Kbytes) are always allo
atedas still obje
ts to avoid fragmenting the movable obje
t se
-tions. Permanent obje
ts are allo
ated stati
ally if they areprogram
onstants or on the C heap if they are symbols.
movable object sections

still objects

from to from to

free
pointer

limit
pointer

C heap

Figure 1: Allo
ation of movable and still obje
ts in the Cheap.Figure 1 shows how the C heap is partitionned. When anallo
ation of a movable obje
t pushes the free pointer pastthe limit pointer, the free pointer is advan
ed to the nextmovable obje
t se
tion if one is free otherwise the
olle
tor isrun. Note that there is a \fudge" spa
e (16 Kbytes) betweenthe limit pointer and the end of the from-spa
e. This is toa

omodate the runtime library whi
h sometimes needs toblindly allo
ate a bounded number of movable obje
ts with-out
he
king the limit pointer until all obje
ts are allo
ated.The sta
k-
a
he also has a fudge spa
e (20 Kbytes).3.3 Obje
t RepresentationFigure 2 shows how movable obje
ts are represented. Ob-je
ts are aligned on a 4 byte boundary ex
ept for
onumswhi
h are aligned on an 8 byte boundary. The two lowerbits of a pointer are used to en
ode a primary type infor-mation: 00 for �xnums (small exa
t integers), 10 for otherimmediates (
hara
ters, booleans, empty-list, et
.), 11 forpairs, 01 for other memory allo
ated obje
ts. The body ofall memory allo
ated obje
ts is pre�xed with a single wordheader whi
h
ontains the following �elds: 24 bits for lengthof body in bytes, 5 bits for se
ondary type information (pair,ve
tor, string, et
.), 3 bits for an allo
ation
lass tag (per-manent, still, movable-but-not-forwarded, and movable-and-forwarded whi
h
ounts for 2 tags be
ause in this
ase theheader
ontains the forwarding pointer). Still obje
ts pre�xthe header with extra �elds to a

omodate the
olle
tor (areferen
e
ount and 2 links as explained below).
24 5 3

e
p
yt lass

length in bytes
c

header body (aligned on 4 or 8 byte boundary)Figure 2: Movable obje
t representation.

3.4 The Blo
king Colle
torGambit-C's blo
king
olle
tor
ombines the stop-and-
opyte
hnique (for movable obje
ts) and the mark-and-sweepte
hnique (for still obje
ts). Permanent obje
ts are nots
anned by the
olle
tor be
ause they do not need to bere
laimed and
an only
ontain referen
es to permanent ob-je
ts.Still obje
ts are pla
ed on a linked list when allo
ated.This list is used at the start of the
olle
tion to mark all thestill obje
ts whi
h have a nonzero referen
e
ount, and at theend of the
olle
tion to re
laim all unmarked still obje
ts (bya
all to the free C library routine). A list of all markedbut not yet s
anned still obje
ts is also maintained by the
olle
tor (this explains why still obje
ts have 2 link �elds).The movable obje
ts are handled by a Cheney-style
opy-ing algorithm [Che70℄ whi
h overwrites the header with theforwarding pointer. Control alternates between the stop-and-
opy and mark-and-sweep algorithms until the list of allmarked but not yet s
anned still obje
ts is empty and thereare no remaining movable obje
ts that have been
opied toto-spa
e but have not yet been s
anned.The roots used by the
olle
tor are:� the nonzero referen
e
ount still obje
ts,� the S
heme global variables,� the virtual ma
hine registers,� the top part of the sta
k-
a
he (i.e. the
on-tinuation frames in the
urrent
ontinuationthat have not been
aptured by a
all to
all-with-
urrent-
ontinuation)At the end of the
olle
tion, the S
heme heap is resizedby allo
ating or re
laiming some movable obje
t se
tions.The default poli
y
urrently used is to make the heap twi
ethe size of the spa
e o

upied by live obje
ts (for movableobje
ts the spa
e o

upied is multiplied by two be
ause thereis spa
e needed for the a
tual obje
t and its
opy). The user
an
on�gure the resizing ratio, as well as the minimum andmaximum heap size, when the program is laun
hed.4 Integrating the Colle
tor Into Gambit-CIn repla
ing Gambit-C's blo
king
olle
tor with Dub�e's
ol-le
tor [DFS96℄ we had two goals: adapt the
olle
tor to aprodu
tion quality
ompiler and measure the performan
eof the
olle
tor in a realisti
 setting. This se
tion des
ribeshow Dub�e's
olle
tor was modi�ed.Dub�e's
olle
tor is a mark-and-
ompa
t
olle
tor whi
h
ompa
ts by sliding obje
ts (the ordering of obje
ts in mem-ory is preserved). Dub�e's
entral idea is the use of a non-movable handle whi
h points to a movable part. Thus areferen
e to a S
heme obje
t is en
oded as a tagged pointerto a one word handle whi
h
ontains a pointer to the body ofthe movable obje
t. Be
ause of this indire
tion it is possibleto avoid an \update" pass to update all obje
t referen
es tothe new lo
ation of the obje
ts. This operation is a problemin a real-time setting be
ause the number of referen
es toupdate for a given obje
t is not bounded and therefore
annot be done atomi
ally. However, an overhead is added tothe mutator for every a

ess to the obje
t. The overhead wemeasured is reported in Se
tion 5.Be
ause Gambit-C handles interrupts through polling[Fee93℄ and that polling points and heap limit
he
ks
an

only o

ur at the end of basi
-blo
s, it is possible to main-tain dire
t pointers to the movable part of obje
ts temporar-ily (for the duration of a basi
-blo
). This allows the indi-re
tion
ost to be amortized over multiple a

esses to thesame obje
t, even in a multi-threaded
ontext. However,the Gambit-C
ompiler does not
urrently exploit this pos-sibility.4.1 Memory PartitioningDub�e's
olle
tor assumes a �xed size heap and that all ob-je
ts are movable. This simpli�es the memory partitioningbe
ause ea
h memory se
tion
an be preallo
ated. Gambit-C however allows the S
heme heap to grow and shrink ondemand so a di�erent approa
h is needed.The memory partitioning is only slightly di�erent fromthe blo
king
olle
tor. The three allo
ation
lasses are main-tained and the movable obje
t se
tions are the same size.Be
ause
ompa
tion is done by sliding obje
ts, the
ompletesize of ea
h movable obje
t se
tion is used for allo
ation, notjust half.The allo
ation limit pointer is handled di�erently. In-stead of pointing
lose to the end of the
urrent movable ob-je
t se
tion, it initially points a
onstant amount (G words)further than the allo
ation pointer. The mutator passes
on-trol to the
olle
tor when the allo
ation pointer
rosses thislimit. When the
olle
tor is done, it sets the limit pointerto G plus the allo
ation pointer, unless there isn't enoughspa
e in the
urrent movable obje
t se
tion in whi
h
asethe next se
tion is used. The value of G
an be adjustedto
ontrol the granularity (and thus overhead) of the
on-text swit
hes between mutator and
olle
tor and also the
olle
tor pause time (whi
h is roughly proportional to G asexplained below). A setting of G = 4096 words o�ers a good
ompromise between pause time and overhead, and is usedin our experiments.Handles are nonmovable and are thus allo
ated outsidethe movable obje
t se
tions in handle se
tions. Ea
h handlese
tion
ontains the (worst-
ase) number of handles neededfor the obje
ts in one movable obje
t se
tion, i.e. 1/3 thesize of a movable obje
t se
tion. When a handle se
tionis allo
ated o� the C heap the handles in that se
tion arelinked together and added to the free handle list. This listshrinks and grows with the allo
ation and deallo
ation of themovable obje
ts. Handle se
tions are never freed sin
e theyare not tied dire
tly to a spe
i�
 movable obje
t se
tion butindividually to movable obje
ts. So there will be N handlese
tions if the maximum number of movable se
tions in thepast exe
ution is N . The S
heme heap size a

ounts for thehandle se
tions.4.2 The Marked Obje
t ListDub�e's
olle
tor uses a main heap (whi
h is one
ontiguousse
tion) for two purposes. Obje
ts are allo
ated at one endand a marking sta
k is maintained at the other end. Thissta
k holds pointers to all the obje
ts that have been markedbut not yet s
anned. Marking an obje
t adds it to the sta
kand s
anning an obje
t removes it from the top of the sta
k.The spa
e for one pointer is reserved on the sta
k on everyallo
ation (by in
rementing the marking sta
k limit whi
hseparates the area reserved for obje
ts from the area reservedfor the marking sta
k).We have implemented the marking sta
k by linking allobje
ts that have been marked but not yet s
anned into the

\marking list". This required adding a �eld (the mark �eld)to movable obje
ts whi
h is also used to en
ode the
olor ofthe obje
t. When the
olle
tor has not yet determined thatan obje
t is rea
hable its mark �eld is set to 0 (white). Afterbeing marked, the mark �eld
ontains the address of the nextobje
t in the marking list or a spe
ial end of list marker(gray). Finally, when the obje
t is s
anned, it is deta
hedfrom the marking list and its �eld is set to -1 (bla
k). Notethat still obje
ts already have a mark �eld, so an extra �eldis not needed for them. The mark �eld is also used forhandling obje
t mutation (details below).4.3 New Obje
t RepresentationIn order to a

ess obje
ts in the same way regardless of theirallo
ation
lass, all obje
ts are represented uniformly witha handle. For permanent obje
ts a spa
e for the handle isreserved before the header as in Figure 3. There is no needfor a mark �eld.
header

aligned bodyreference
object

handleFigure 3: Permanent obje
t representationFor still obje
ts several �elds
ome before the header asshown in Figure 4: the mark �eld whi
h links still obje
ts,the handle, a referen
e
ount, a link to the next still obje
t,and a length (whi
h is only needed for memory a

ount-ing purposes and be
ause Gambit-C supports operations toshrink the size of an obje
t whi
h is useful for implementingbignums and string ports).
header

aligned body

count
reference

reference
object

handle marklength linkFigure 4: Still obje
t representationThe allo
ation of a movable obje
t requires an allo
ationof a nonmovable handle from the free handle list and anallo
ation of the movable part in the
urrent movable obje
tse
tion. Note that there is always enough handles for all themovable se
tions, so it is not ne
essary to
he
k exhaustionof the free handle list. As shown in Figure 5, the movablepart has two more �elds than for the blo
king
olle
tor:� Ba
k pointer: points ba
k to the
orresponding han-dle. Needed in the
ompa
ting phase of the
olle
torto update or free the handle.� Mark: this links gray obje
ts, as explained above.The representation of movable obje
ts may seem spa
eineÆ
ient but it
ompares advantageously to the blo
king
olle
tor whi
h has a hidden fa
tor of two for the spa
e re-served in to-spa
e. For a n word body, the representationfor the blo
king
olle
tor is more spa
e eÆ
ient for n < 2(whi
h is rare) and less spa
e eÆ
ient for n > 2. For the fre-quent
ase of pairs (n = 2), the representations are equallyspa
e eÆ
ient.

header

aligned body

handle

object
reference

in movable object sectionin handle section

pointer
back

markFigure 5: Movable obje
t representationNote that this obje
t representation allows testing the
olor of any
lass of obje
t by reading the �eld just beforethe header. In the
ase of a permanent obje
t, the
olor willappear gray be
ause the handle is neither 0 or -1.4.4 The Colle
torThe
olle
tor is
alled on two types of events, when the allo-
ation limit is rea
hed and when the sta
k-
a
he over
ows.The
olle
tor
an be in one of 4 states
orrespondingto ea
h phase of the
olle
tion (mark roots, marking, pre-
ompa
tion,
ompa
tion). A
olle
tion
y
le begins whenthe
olle
tor enters the mark roots phase. The time allottedto the
olle
tor for the next par
el of
olle
tion is kept in aglobal variable of the
olle
tor
alled the word bank (detailsbelow). When this time is up,
ontrol returns to the mutatorand the next time the
olle
tor is
alled it will resume in thesame phase.1. Mark roots phase. This phase is performed atomi-
ally (even though it doesn't need to be). It initializessome global variables of the
olle
tor and marks theroots. The roots are the same as the blo
king
olle
tor,ex
ept for the sta
k-
a
he. We observed that even forbig appli
ations the time needed for marking the rootsis small enough not to ex
eed our real-time
onstraints.This is due to a limited number of global variables (theS
heme runtime library whi
h is present in all appli
a-tions
ontains 1500 global variables and the Gambit-C
ompiler, our largest S
heme ben
hmark at 20000 lines,adds another 1500 variables to that).2. Marking phase. In this phase, the still obje
t andmovable obje
t marking lists are s
anned.3. Pre-
ompa
tion phase. This phase is performedatomi
ally. Ea
h time it is entered the roots andthe sta
k-
a
he are s
anned again be
ause the muta-tor might have stored referen
es to white obje
ts intothem while the
olle
tor was in the marking phase. Theuse of a �xed size sta
k-
a
he bounds the amount ofwork to be done (on our test ma
hine this phase takesup to 3 millise
onds for the
ompiler ben
hmark, androughly 1 millise
ond for the other ben
hmarks). Ifthis marks new obje
ts the
olle
tor goes ba
k to themarking phase, otherwise the
olle
tor will:(a) free the unmarked still obje
ts,(b) save a
opy of the movable obje
t allo
ationpointer su
h that all movable obje
ts allo
atedbetween now and the end of the
ompa
tion phasewill be
onsidered bla
k regardless of their mark�eld (movable obje
ts are always allo
ated with 0(white) in the mark �eld)

4. Compa
tion phase. The last phase
ompa
ts theheap. A
opying pointer and a s
anning pointer are setto the base of the �rst movable obje
t se
tion. Ea
hobje
t in the movable obje
t se
tions is pro
essed inturn using the s
anning pointer. Unmarked obje
tsare
olle
ted by transfering the
orresponding handleto the free handle list. Marked obje
ts are
opied tothe address indi
ated by the
opying pointer and the
orresponding handle is updated.When the
ompa
tion ends, the allo
ation pointer isset to the value of the
opying pointer and the heap isresized (all the movable obje
ts retained are
onsideredlive).If the
olle
tor was
alled due to a sta
k-
a
he over
ow,a sta
k
olle
tion routine is �rst
alled. Every frame in thesta
k-
a
he is
opied to the S
heme heap, the word bank isupdated a

ording to the size of the frames, the sta
k-
a
heis emptied and the
olle
tor is
alled to
ontinue normalpro
essing as explained above.4.5 Write BarrierWhen a referen
e to obje
t X is stored in obje
t Y , thesystem must ensure that the
olle
tor will not negle
t tomark X if Y ends up marked when the
ompa
tion phase isstarted (unless of
ourse the referen
e to X in Y is overwrit-ten). This will not happen automati
ally if X is white andY is bla
k. We have experimented with two write barriersto handle this
ase.1. Gray X. Here the white obje
t X is grayed by puttingit in the marking list. This is the original barrierproposed by Dub�e and is similar to Dijkstra's barrier[DLM+78℄.2. Gray Y . Here the bla
k obje
t Y is grayed by puttingit ba
k in the marking list. This is similar to Steele'sbarrier [Ste75℄. This is less
onservative than graying X(i.e. X will possibly be re
laimed if the referen
e toX inY is overwritten). We reje
ted a more pre
ise barriermethod that only grays the lo
ation of the mutationusing a store list be
ause we want to keep a stri
t boundon heap size. This is a reasonable
ompromise giventhat there are no mutation primitives in Erlang andS
heme programs are often mostly fun
tional.The write barrier is only used on heap allo
ated obje
tsby the primitives: ve
tor-set!, set-
ar!, set-
dr! and
ell-set! (whi
h is used for assignments to lo
al variables).There is no barrier on the roots (the virtual registers, thesta
k-
a
he and the global variables) whi
h are s
anned inthe pre-
ompa
tion phase of the
olle
tor. This eliminatesthe need for prote
ting S
heme's set! operation on globalvariables.The pseudo
ode for the ve
tor-set! primitive, in
lud-ing a \gray X" write barrier, is shown in Figure 6 (the othermutation primitives are similar). The pro
edure gray(val)adds obje
t val to the head of the marking list.Long obje
ts are s
anned in
rementally to bound
olle
-tor pauses. In the marking phase, the
olle
tor s
ans longobje
ts in small segments and a pointer to the uns
annedregion is saved when
ontrol returns to the mutator. Con-sequently, when the \gray Y " barrier is used, mutation ofa still ve
tor obje
t must
he
k if the mutation is in the

ve
tor_set(ve
t, index, val):if memory_allo
ated(val) and g
_phase!=
ompa
tionand bla
k(ve
t) and white(val) then gray(val)ve
t[index℄ = valFigure 6: Pseudo
ode for the ve
tor-set! primitive andwrite barrier.s
anned region, in whi
h
ase the
olle
tor must res
an itfrom the beginning in the next par
el of
olle
tion. This isnot a perfe
t solution in general be
ause the
olle
tor
ouldget stalled on marking ve
tor V if the mutator repeatedlymutates the beginning of V (this
ould lead to the heapover
owing). Fortunately, in the
ontext of an Erlang sys-tem this is not a problem be
ause we
an write the runtimesystem in su
h a way that mutations are always performedon small ve
tors.4.6 Par
eling Out Colle
tion WorkThe following analysis applies to the \gray X" write barrierand to the \gray Y " write barrier with no mutation to longobje
ts. We will make use of the following de�nitions:� H is the size of the heap (in words).� Ri is the proportion of the heap o

upied by obje
tsretained by the
olle
tor at the end of
olle
tion
y
lenumber i.� Wtotal is the total amount of work for one
olle
tion
y
le in number of words to mark and to
ompa
t.� W is the amount of work in a par
el of
olle
tion.� B is the value of the word bank.The marking phase will tou
h at most HRi words worthof obje
ts and the
ompa
ting phase H words, so Wtotal �H(1 +Ri). This work is spread over the allo
ation of H(1�Ri�1) words by the mutator. So, if the
olle
tor tou
hes Cwords per word allo
ated by the mutator, then the
olle
tion
y
le will end before the mutator exhausts the free spa
e aslong as C � WtotalH(1�Ri�1) � 1+Ri1�Ri�1 .We use the setting C = 5+3L2(1�L) , where L is
hosen atprogram laun
h and is an upper bound on the proportion ofthe heap o

upied by live obje
ts. Figure 7 gives a plot ofthis fun
tion.
0246810

1214161820
0 0.2 0.4 0.6 0.8 1

C
LFigure 7: Value of C as a fun
tion of L.

This setting of C ensures that the
olle
tion
y
le willend before the mutator exhausts the free spa
e when Ri�1 �1+L2 . Moreover, it guarantees thatRi � 1+L2 . This is easy toprove by indu
tion (see [DFS96℄ for a proof). An interesting
orollary is that the
olle
tor
an stay idle at the start ofthe
olle
tion
y
le until the mutator has allo
ated enoughobje
ts to make the heap o

upied to 1+L2 . By staying idlein this way, the
olle
tor will be less
onservative and thusmore eÆ
ient at re
laiming garbage.The word bank is used in par
eling the
olle
tion work.At the start of
olle
tion
y
le i, B is set to the negativevalue �H(1+L2 � Ri�1) so that the
olle
tor will stay idleat the start of the
olle
tion
y
le. When the heap limit is
rossed and when the sta
k-
a
he over
ows, the number ofwords allo
ated (still and movable obje
ts) is added to B.Thus, in the typi
al
ase (heap limit rea
hed) B in
reasesin steps of G.If B is negative, the
olle
tor returns immediately tothe mutator. Otherwise, the amount of
olle
tion work is
al
ulated based on B and C (i.e. W = BC), the
olle
torperforms W words worth of
olle
tion, sets B to 0 and thenreturns to the mutator.5 ResultsTo measure the performan
e of our in
remental
olle
tor weused a set of 20 S
heme ben
hmarks. In all
ases the pro-grams were
ompiled with the Gambit-C 2.7
ompiler usingthe de
larations whi
h gave the fastest exe
ution (inlining ofprimitives, �xnum or
onum spe
i�
 arithmeti
, no runtimetype
he
ks). The short running programs were modi�edto repeat the
omputation several times so that the totalexe
ution time would be at least 5 se
onds.A �rst group of programs
omes from the Gabriel ben
h-mark suite [Gab85℄. These programs are mostly kernelswhi
h stress spe
i�
 features of the system (�xnum arith-meti
, allo
ation, traversal, mutation, re
ursion, iteration).Some of these ben
hmarks don't perform any allo
ation sowe ignored them (tak, takl, triangle, and the traversalphase of traverse). The se
ond group
onsists of
oating-point intensive programs: fibfp, sumfp, mbrot, fft, andsimplex. The third group
ontains larger appli
ations whi
hmix various types of symboli
 pro
essing, in
luding lots of al-lo
ations, obje
t mutations and traversal of data-stru
tures:
onform (type
he
ker, 700 lines), peval (partial evalua-tor, 800 lines), earley (parser, 800 lines), maze (
onstru
ta maze, 900 lines), and
ompiler (Gambit-C S
heme
om-piler, 20000 lines).All ben
hmarks were run on an unloaded 160Mbyte133Mhz DEC Alpha 21064 running Digital UNIX V4.0.CPU time statisti
s were measured with the C library rou-tine getrusage whi
h has a 1 millise
ond resolution. We
onsidered using the gettimeofday routine to measure timedown to the mi
rose
ond but sin
e it measures real-timesome of the short duration statisti
s measured (su
h as themaximum
olle
tor pause) are too easily perturbed by OS
ontext swit
hes over whi
h we have no
ontrol. Ea
h ben
h-mark was run on
e. All times are given in se
onds.To redu
e the importan
e of di�eren
es in the memorypartitioning of the di�erent
olle
tors, all programs wererun with a �xed-size heap of 12Mbytes. This also avoidedunexpe
tedly long
olle
tor pauses when resizing the heap (itseems that
alls to mallo
/free for large blo
ks sometimestakes over 10 millise
onds!).

5.1 Overhead of In
remental Colle
tionOur �rst goal is to measure the total overhead of using an in-
remental
olle
tor rather than a blo
king
olle
tor in a pro-du
tion quality
ompiler su
h as Gambit-C. Also, we wishto �nd the overhead asso
iated with performing the
olle
-tion in
rementally. For this purpose the programs were runwith three di�erent
olle
tors:1. S&C: this is the blo
king
olle
tor in the standardGambit-C distribution.2. M&C: this is our
olle
tor when run as a blo
king
olle
tor (i.e. the
olle
tion is done
ompletely whenthe heap is full and there is no write barrier). A sta
k-
a
he over
ow
auses a full
olle
tion (whi
h is what isdone by S&C).3. M&C R-T: this is the full in
remental
olle
tor de-s
ribed in this paper, using a value of L = 50%.The results are reported in Figure 8. The �rst
olumngives the allo
ation rate of the program in Mbytes per se
ondwhen run with S&C. The se
ond
olumn gives the exe
utiontime in se
onds for S&C. The exe
ution time for the other
olle
tors is expressed relative to the time for S&C so thatthe overhead with respe
t to S&C stands out more
learly.The M&C R-T
olle
tor was run with ea
h type of writebarrier. Note that the results are ordered a

ording to theoverhead of M&C R-T with the \gray X" barrier.Allo
 S&C M&C M&C R-TMB/se
 gray X gray Yboyer 3.14 16.46 .91 .92 .96puzzle .92 21.88 1.20 1.30 1.41
ompiler .91 49.99 1.19 1.31 2.52fft 12.58 5.05 1.53 1.56 1.58traverse 5.61 10.93 1.37 1.67 2.01browse 3.95 33.36 1.25 1.73 2.46peval 5.86 35.40 1.52 1.81 3.16
onform 2.88 25.52 1.29 1.85 2.60simplex 15.34 10.91 1.70 2.10 2.32earley 8.42 36.13 1.87 2.24 3.02
pstak 46.94 13.95 2.41 2.44 2.46maze 16.18 11.58 1.65 2.46 2.53destru
 19.35 15.29 2.11 2.78 3.70deriv 27.43 32.69 2.50 2.92 4.08fibfp 47.05 11.80 2.43 2.94 2.96dderiv 22.76 39.39 2.04 2.98 4.17mbrot 60.20 13.03 2.87 3.62 3.64divre
 54.92 16.66 3.15 3.83 3.77sumfp 71.12 85.82 3.21 4.24 4.26diviter 123.03 7.44 6.51 8.09 8.04Figure 8: Exe
ution time with ea
h
olle
tor (S&C in se
-onds and others relative to S&C).For the M&C
olle
tor the overhead in
ludes: allo
ationof handles, indire
tion
ost when a

essing a memory allo-
ated obje
t and di�eren
e in
olle
tion algorithms. If weignore boyer, the overheads range from 1.19 to 6.51, witha median of 1.7. We
an see that the overhead is roughly
orrelated to the allo
ation rate. This is reasonable be
auseobje
t allo
ation is signi�
antly more expensive than the

simple pointer in
rement performed for S&C and all ob-je
ts allo
ated in
luding dead ones need to be pro
essed inthe
ompa
tion phase. The highest overhead is for diviterwhi
h spends most of its time in a tight loop performing 3 a
-
esses to pairs and 1 allo
ation of a pair whi
h is soon dead.An anomaly exists for boyer whi
h is slowest of all whenusing S&C be
ause the mutator and
olle
tor are in syn
h(the pro�le of live obje
ts is like a sawtooth, going from50Kbytes to 1400Kbytes, and with a 12Mbyte heap S&Calways
olle
ts at moments of peak live obje
ts whereas theother
olle
tors do it at uniformly distributed levels, whi
his more eÆ
ient).When the allo
ation rate is low the overhead dependsmore on the handle indire
tion
ost and the di�eren
e in
olle
tion algorithms. It is interesting to see that a
omplexappli
ation like
ompiler has a low overhead of 1.19. Weattribute this to the fa
t that its modular design
auses a lotof time to be spent in pro
edure
alls and returns betweenmodules (whi
h is una�e
ted by the
olle
tor but is ratherslow in Gambit-C due to the tail-
all support), that it wasdesigned to minimize the
reation of garbage and that itperforms I/O.The M&C R-T
olle
tor with \gray X" barrier has over-heads in the range 1.3 to 8.09, with a median of 2.24. Theoverheads follow the same trend as the blo
king M&C
olle
-tor, and are a median fa
tor of 1.21 higher with a maximumof 1.5 times higher for maze. So the transition from M&Cto M&C R-T has a lower overhead than the transition fromS&C to M&C (in other words most of the overhead of our in-
remental
olle
tor is not in the \in
rementality" but ratherin the use of a
ompa
ting
olle
tor with handles).If we only
onsider the ben
hmarks whi
h perform muta-tions on obje
ts, the \gray X" barrier is always faster thanthe \gray Y " barrier, by a median fa
tor of 1.35 and a max-imum of 1.9 times faster for
ompiler. Our explanation isthat the \gray Y " barrier may
ause obje
ts to be markedmultiple times and this extra
ost outweighs the bene�t oflower
onservatism.5.2 Colle
tion PausesAnother important aspe
t to measure is the duration of thepauses of the in
remental
olle
tor. The average pause isof
ourse interesting but given the
ontext of soft real-timeappli
ations, it is also important to know what is the maxi-mum pause and also the per
entage of total exe
ution timespent in the
olle
tor (%GC). Figure 9 gives these measure-ments ordered a

ording to %GC when using the \gray X"barrier.The average pause is in the range 2.42 to 4.37 millise
-onds, with a median of 3.25 millise
onds. The maximumpause is in the range 6 to 18 millise
onds, with a median of8 millise
onds. The %GC is in the range 4% to 57%, witha median of 22%. These measurements are
ompatible withour real-time
onstraints.The programs with the highest %GC are those whi
hhave high allo
ation rates and few live obje
ts (the top 3are
oating point intensive programs whi
h stri
tly allo
ate
onums). In this situation the
olle
tor will spend a largefra
tion of its time
ompa
ting bla
k obje
ts that are in fa
tgarbage. So for most obje
ts allo
ated there are two asso-
iated
ompa
tions needed (be
ause during the
ompa
tionphase obje
ts are allo
ated bla
k).Finally, Figure 10 shows the distribution of pause times.The X axis gives pause time in se
onds and the extent of

Avg Max %GC
ompiler .00437 .012 4puzzle .00242 .010 4
onform .00325 .010 5peval .00299 .008 8browse .00319 .010 10boyer .00364 .009 12trav1 .00397 .014 15simplex .00336 .008 20destru
 .00319 .007 21earley .00394 .012 22dderiv .00321 .007 24fft .00370 .008 24deriv .00318 .007 29maze .00371 .018 35
pstak .00266 .006 40divre
 .00323 .007 45diviter .00323 .007 48fibfp .00370 .008 52mbrot .00375 .007 55sumfp .00385 .007 57Figure 9: Average and maximum
olle
tor pause in se
ondsand per
ent of time spent in
olle
tor.the X axis indi
ates the maximum
olle
tor pause. As
anbe seen, the distribution is
ompa
t around the average andthere are no distant outliers.5.3 Dis
ussionAt �rst glan
e the overhead of the in
remental
olle
torseems too high for pra
ti
al use. However this overheadmust be put in perspe
tive. Erlang programs
ompiled withEtos and Gambit-C 2.7 with the S&C
olle
tor are roughly15 times faster than with the JAM 4.4.1 byte
ode imple-mentation of Erlang [FL98℄. Even if a program using thein
remental
olle
tor is slowed down by a fa
tor of 2.24
om-pared to the S&C
olle
tor, the program is still over 6 timesfaster than when using JAM.Of
ourse the overhead and pause time that is tolera-ble depends on the appli
ation. However, it is reassuringthat the measurements we have made on our
olle
tor �tvery
losely with the requirements of soft real-time tele
om-muni
ation appli
ations (2-5 millise
ond average pause and10-50 millise
ond maximum pause). Note also that our testma
hine (133Mhz DEC Alpha 21064) is more than 5 yearsold at this writing and that mu
h faster mi
ropro
essors arereadily available. When exe
uted on a now
urrent 500MhzDEC Alpha 21164A the
ompiler ben
hmark ran 6.7 timesfaster and the
olle
tor was about 3.5 times faster (
olle
-tion pauses were 1 millise
ond on average with a maximumpause of 3 millise
onds).6 Future Work and Con
lusionBe
ause of the way the word bank is handled, the
olle
-tor only starts
olle
ting after the mutator has allo
ated afair amount (i.e. until the word bank be
omes positive). Itwould be interesting to investigate if by starting the
olle
torearlier we
ould redu
e the
olle
tion overhead and lengthof pauses (it isn't
lear that this is good be
ause the
olle
-tor will be more
onservative, retaining some obje
ts that

boyer
.000 .005

.00364

55%
browse

.000 .005 .010

.00319

74%

ompiler

.000 .005 .010

.00437

39%

onform

.000 .005 .010

.00325

72%

pstak
.000 .005

.00266

43%
dderiv

.000 .005

.00321

70%
deriv

.000 .005

.00318

71%
destru

.000 .005

.00319

74%

diviter
.000 .005

.00323

71%
divre

.000 .005

.00323

72%
earley

.000 .005 .010

.00394

39%
fft

.000 .005

.0037

45%

fibfp
.000 .005

.0037

50%

maze
.000 .005 .010 .015

.00371

53%
mbrot

.000 .005

.00375

52%
peval

.000 .005

.00299

65%

puzzle
.000 .005 .010

.00242

43%

simplex
.000 .005

.00336

59%

sumfp
.000 .005

.00385

60%
traverse

.000 .005 .010

.00397

47%

Figure 10: Distribution of
olle
tor pauses.

would have died). A dynami

al
ulation of L also seemsne
essary, sin
e it would allow the
olle
tor to adapt to thebehavior of the appli
ation.There is also a need for testing the
olle
tor with softreal-time Erlang appli
ations. This will have to wait untilEtos is
omplete and robust.On
e Dub�e's
olle
tor is fully integrated into Gambit-C, we plan to integrate other near real-time
olle
tors (inparti
ular [NO93℄ whi
h seems well suited to our
ontext)and
ompare their performan
e.As our experimental results show, the in
remental
ol-le
tor is able to meet the maximum and average pause time
onstraints needed by tele
ommuni
ation appli
ations. Theoverhead of the in
remental
olle
tor with respe
t to a blo
k-ing
olle
tor is rather high (a fa
tor of 1.3 to 8.1) but, giventhat we are working in the
ontext of an optimizing
ompiler,the
ompute power left for the mutator
ompares favorablywith a byte
ode implementation of Erlang.A
knowledgementsThis work was supported in part by grants from Eri
ssonTele
om Ab, the Natural S
ien
es and Engineering Resear
hCoun
il of Canada and the Fonds pour la formation de
her
heurs et l'aide �a la re
her
he.Referen
es[AVWW96℄ J. L. Armstrong, S. R. Virding, C. Wikstr�om,and M. C. Williams. Con
urrent Programmingin Erlang. Prenti
e Hall, se
ond edition, 1996.[AXD98℄ AXD 301 High-performan
e ATM swit
hingsystem. Eri
sson Tele
om AB, 1998.[BW88℄ Hans-Juergen Boehm and Mark Weiser.Garbage
olle
tion in an un
ooperative envi-ronment. Software Pra
ti
e and Experien
e,18(9):807{820, 1988.[Che70℄ C. J. Cheney. A non-re
ursive list
ompa
t-ing algorithm. Communi
ations of the ACM,13(11):677{8, November 1970.[DFS96℄ Danny Dub�e, Mar
 Feeley, and Manuel Ser-rano. Un GC temps r�eel semi-
ompa
tant.In Guy Lapalme and Christian Queinne
, edi-tors, Journ�ees Fran
ophones des Langages Ap-pli
atifs, volume 7, pages 165{181, Val-Morin,Qu�ebe
, Janvier 1996. INRIA.[DLM+78℄ Edsgar W. Dijkstra, Leslie Lamport, A. J. Mar-tin, C. S. S
holten, and E. F. M. Ste�ens.On-the-
y garbage
olle
tion: An exer
ise in
ooperation. Communi
ations of the ACM,21(11):965{975, November 1978.[Dub96℄ Danny Dub�e. Un syst�eme de programmationS
heme pour mi
ro-
ontrôleur. Master's thesis,D�epartement d'Informatique et de Re
her
heOp�erationnelle, Universit�e de Montr�eal, April1996.[Fee93℄ Mar
 Feeley. Polling eÆ
iently on sto
k hard-ware. In Pro
eedings of the Fun
tional Pro-gramming and Computer Ar
hite
ture, pages179{187, Copenhagen, June 1993.

[FL98℄ Mar
 Feeley and Martin Larose. Compiling Er-lang to S
heme. In Pro
eedings of the 1998 Pro-gramming Languages, Implementations, Logi
sand Programs Conferen
e, September 1998.[FM90℄ Mar
 Feeley and James S. Miller. A parallel vir-tual ma
hine for eÆ
ient S
heme
ompilation.In Conferen
e Re
ord of the 1990 ACM Sym-posium on Lisp and Fun
tional Programming,pages 119{130, Ni
e, Fran
e, June 1990. ACMPress.[FMRW97℄ M. Feeley, J. Miller, G. Rozas, and J. Wil-son. Compiling Higher-Order Languages intoFully Tail-Re
ursive Portable C. Te
hni
alReport 1078, D�epartement d'Informatique etde Re
her
he Op�erationnelle, Universit�e deMontr�eal, Août 1997.[Gab85℄ Ri
hard P. Gabriel. Performan
e and Evalua-tion of Lisp Systems. MIT Press Series in Com-puter S
ien
e. MIT Press, Cambridge, MA,1985.[HDB90℄ R. Hieb, R. K. Dybvig, and C. Bruggeman.Representing
ontrol in the presen
e of �rst-
lass
ontinuations. ACM SIGPLAN Noti
es,25(6):66{77, 1990.[HFA+96℄ Pieter H. Hartel, Mar
 Feeley, Martin Alt,Lennart Augustsson, Peter Baumann, Mar-
el Beemster, Emmanuel Chailloux, Chris-tine H. Flood, Wolfgang Grieskamp, JohnH. G. van Groningen, Kevin Hammond,Bogumi lHausman, Melody Y. Ivory, Ri
hardJones, Peter Lee, Xavier Leroy, Rafael Lins,Sandra Loosemore, Niklas R�ojemo, ManuelSerrano, Jean-Pierre Talpin, Jon Tha
kray,Stephen Thomas, Pierre Weis, and Peter Went-worth. Ben
hmarking implementations of fun
-tional languages with "pseudoknot", a
oat-intensive ben
hmark. Journal of Fun
tionalProgramming, 6(4), 1996.[NO93℄ S
ott Nettles and James O'Toole. Real-timerepli
ation garbage
olle
tion. In Pro
eedingsof the 1993 SIGPLAN Conferen
e on Program-ming Language Design and Implementation.Published in SIGPLAN Noti
es, volume 28,pages 217{226, Albuquerque, New Mexi
o,June 1993. ACM Press.[Ste75℄ Guy L. Steele, Jr. Multipro
essing
ompa
tify-ing garbage
olle
tion. Communi
ations of theACM, 18(9):495{508, September 1975.

