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Abstract

Embedded systems often have severe memory constraints requiring careful encoding of programs.
For example, smart cards have on the order of1K of RAM, 16K of non-volatile memory, and
24K of ROM. A virtual machine can be an effective approach to obtain compact programs but
instructions are commonly encoded using one byte for the opcode and multiple bytes for the
operands, which can be wasteful and thus limit the size of programs runnable on embedded
systems. Our approach uses canonical Huffman codes to generate compact opcodes with custom-
sized operand fields and with a virtual machine that directly executes this compact code. We present
techniques to automatically generate the new instruction formats and the decoder. In effect, this
automatically creates both an instruction set for a customized virtual machine and an implementation
of that machine. We demonstrate that,without prior decompression, fast decoding of these virtual
compressed instructions is feasible. Through experiments on Scheme and Java, we demonstrate
the speed of these decoders. Java benchmarks show an average execution slowdown of 9%. The
reductions in size highly depend on the original bytecode and the training samples, but typically vary
from 40%to 60%.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Embedded systems are resource-constrained devices requiring careful attention to
memory usage and power consumption. To attain these goals, several researchers are taking
the approach of reducing program size [6,15,14]. We focus on the context where code
decompression cannot be performed prior to the program’s execution. This constraint is
reasonable for embedded systems where a bulk decompression of programs, or even parts
of programs, before execution, might exceed the available RAM.

Embedded systems typically contain both RAM and ROM memory and in most systems
ROM is much larger than RAM. If RAM is used to store program code, for example
by downloading software from a server, andthe virtual machine is stored in ROM, it
is advantageous to use all the ROM spaceif it reduces RAM usage for programs. As
demonstrated in this paper and by some other researchers [24], this may even increase
execution speed. Therefore, in some cases, the compression factor1 should be measured
only for the bytecode stored in RAM with the constraint thatthe virtual machine fits in
ROM; theobjective is not to create a small virtual machine but rather to increase its size
– as much as the ROM allows – in order toreduce the size of the program stored in RAM
and/or increase execution speed.

In other situations, the size of the bytecode and the virtual machine must be taken into
account: for example, when they are both placed in ROM, and the RAM is solely used for
dynamic data. In such cases, the compression factor should be based on the bytecode and
virtual machine sizes.

Some researchers [12,24,9] have shown the virtues of reducing code size, without
decompression before execution, by using bytecode interpreters tailored for one program.
Compression of the bytecode, capable of direct execution without decompression, would
further reduce code size. Other researchers [10,12,3] have stated the possibility of using
Huffman codes to compress bytecode, usuallyto conclude that if the decoding is done in
software it increases execution time to an unacceptable level. In [10], it is further argued
that the faster technique of look-up tables, usingk bits, as presented in [4], uses a significant
amount of space. Our solution is to use canonical Huffman code [27] and several smaller
look-up tables to keep the total size small. Reducing space taken by operands is also
important since they usually account for a large part of the code size. Instruction formats
with small operand fields can further reduce size. The main goal of this paper is to show
that there are techniques to efficientlydecode such compressed instructions.

Typically, virtual instructions are “byte encoded”: operational codes (opcodes for short)
and operands are encoded in byte units. This method trades space for speed by maintaining
byte, or even word, alignment and a fixed length for all opcodes. In this work, we use
a variable bit-length encoding for a more compact form. We show that using canonical
Huffman code for opcodes, new customized instruction formats, replacement of sequences
of repetitive instructions by one opcode and no byte boundary alignment can significantly
reduce bytecode size and still allow fast direct execution by an interpreter. For speed,
canonical Huffman codes should not be decoded bit by bit; instead, blocks ofk bits should

1 The compression factor is the length (size) of the compressed codedivided by the length of the uncompressed
code (original bytecode). Therefore,a small factor means a good compression.
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Fig. 1. Creation of instruction set, its decoder and interpreter.

be used. Such an idea has been explored previously by Turpin and Moffat [21]. We have
extended their work to allow multiplek bit look-ups and generate decoders given a space
constraint.

Our approach assumes automation. The decoders, the interpreters, and compressed
instruction set, are all automatically generated (in C) by a tool. They are generated
by specifying space constraints and providing a corpus of sample bytecode programs.
Therefore, in our approach, the design of virtual machines and instruction sets for
compressed programs can be automated. This context allows two application areas for
the work presented in this paper. The first one is the design of virtual machines, such as the
KVM for Java, aimed at embedded systems with memory constraints. This could be done
for any language. The construction of such machines should be done based on a careful
analysis of program samples. The second application is the compilation of programs where
code space is a major concern. In that case, a virtual machine tailored for the program can
be used to reduce space. This is the approach taken in [12,24,9]. Further code size reduction
can be obtained with a compression of the virtual instructions.

In the next section, we give a general presentation of the compression algorithm.
In Section 3canonical Huffman codes are presented along with a compact but slow
decoding method.Section 4presents much faster but slightly less compact decoders.
Section 5explains the C code’s structure for all canonical decoders.Section 6discusses
how decoders access memory for opcodes and operands. Experimental results showing
that the approach is practical are presented inSection 7. Section 8presents some of the
related work.

2. The compression algorithm

Fig. 1presents our general framework. The sample programs are bytecode encoded with
an unmodified compiler. The samples should be appropriately chosen to represent the code
that will be deployed. In particular, the same compiler should be used to create the samples
and the deployed code. An instruction set encoding to compactly represent the samples
is then generated by a tool. This requires an analysis of the instruction frequencies, the
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length of operands, etc., in the samples. The decoder is generated given a space constraint
parameter, along with the interpreter. The sizes of the decoder and interpreter are taken
into account to reduce program sizes. This approach is transparent for the compiler writer
since the compression of programs can be done from the original bytecode.

Our compression approach creates new instructions and encodings for them. These
instructions are either macro-instructions that do the work of a sequence of other
instructions, or basic instructions with a new format for the operands. We proceed as
follows to create them. From the program samples:

(1) A dictionary of (possibly overlapping) repetitive sequences is built. We limit the size
of this dictionary by limiting the length of the sequences and imposing a lower bound
on the frequency of occurrence in the samples.

(2) A dictionary of formats to encode all basic instructions using as few bits as possible
is created. It includes the original formats of thevirtual machine in order to guarantee
that all possible programs can be encoded.

(3) A greedy algorithm repetitively selects either a new format or a sequence of
instructions, based on the maximum spacesaving, until no space gain can be obtained.

The greedy algorithm takes into account the opcode lengths, the new formats, and the
space of the decoder. Further details on the selection algorithm can be found in [17].

Henceforth, the following setting is used:the opcodes are variable length canonical
Huffman codes generated using the static frequencies of the opcodes from sample
programs; and operands are uncompressed but of a length that is not restricted to a multiple
of eight bits. Thus, opcodes and operands arenot byte-aligned. The branch offset of
branch instructions is measuredin bits, but instructions following subroutine calls are byte-
aligned—return addresses are in bytes.

3. Canonical Huffman encoding of opcodes

We encode opcodes using canonical Huffman codes [27]. These are similar to Huffman
codes built by the original bottom up method of [13], but the numerical values of the codes
of a given length form a consecutive sequence. As will be shown, they have a very compact
representation of the bijection between the codes and the encoded object.

Huffman codes are typically generated by incrementally building a binary tree. In the
case of canonical Huffman codes, the resulting tree has all its branches “pushed” to the
right (or left).Fig. 2shows some canonical codes mapped into a tree. The codes, when read
left to right at the leaves, are in order of non-decreasing lengths and in order of increasing
values. Moreover all the codes of a given length form a non-interrupted consecutive
sequence of binary values (for example, all the codes of length four are1100, 1101, 1110
and1111, i.e.12, 13, 14 and 15).

Since we use canonical Huffman codes for opcodes, the two terms will be used
interchangeably; andcanonicalwill often be dropped as we only use canonical Huffman
codes.

In the rest of this section we explain a compact representation of opcodes and an
efficient flexible decoding technique for them.
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Fig. 2. A canonical ascending Huffman tree.

Let lc be the length in bits of codec (a canonical Huffman code),v(c) its value,k ≥ lc
a constant, andVk(c) = v(c)2k−lc ; in other words,Vk(c) is the value ofc left justified in
a k bit processor register. Left justification allows the creation of a very compact decoder
as presented inSection 3.1.

Let C = {ci } be a set of opcodes andlmax their maximum length. Assume that the
opcodes are decoded in a variable (e.g. processor register) ofw bits such thatw ≥ lmax.
Define thevectorbasew[1 . . . lmax] suchthatbasew[ j ] is the smallest valueVw(c) for all
codesc suchthatlc = j . Define the vectordisp[1 . . . lmax] suchthatdisp[ j ] is thenumber
of codesc for which lc < j . The index of codec of lengthlc is:

Vw(c) − basew[lc]
2w−lc

+ disp[lc]. (1)

If the length ofc is known, its index is given by that equation. Given the index, a computed
branch would jump to the implementation of the virtual instruction.

To show examples of opcode frequencies, independently of a specific instruction set
and samples, assume then probabilities pi of a special case of Zipf’s law:pi = 1/(i Hn),
1 ≤ i ≤ n, whereHn is thenth harmonic number

∑n
j =1(1/ j ). Such probabilities model

well the static frequency of instructions in programs.Table 1presents vectorsbasew and
dispfor the Zipf-200 opcodes partly listed inTable 2. Their average length2 is 6.0267.

3.1. Very compact but slow decoding

Assume that the beginning of an instruction is left justified in a variablerd. According
to Eq. (1), decoding the opcode can be reduced to finding its length which can be done
by a sequential search inbase. Fig. 3 shows afragment of C code for this slow but very
compact decoder: Line 2 does the sequential search; the index of the code is calculated in
crd by line 3 using (1); line 4 removes the opcode; line 5 does the actual branching to the
virtual instruction implementation (usinggcc’s computedgoto).

2 The averagelength is
∑

1≤i≤n lci pi where the opcode for the probabilitypi is ci and its length islci .
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1 i = lmax;
2 while (rd < base_w[i]) i--;
3 crd = (rd-base_w[i] >> w-i) + disp[i];
4 rd <<= i;
5 goto *adr[crd];

Fig. 3. C code for a very compact, but slow, decoder for canonical ascending Huffman codes.

Table 1
The vectorsbase_w (aka basew) and
disp (disp) for Zipf-200

i disp basew

3 1 000·2w−3

4 2 0010·2w−4

5 5 01010·2w−5

6 9 011100·2w−6

7 16 1000110·2w−7

8 33 10101110·2w−8

9 65 110011100·2w−9

10 135 1110111110·2w−10

This is a very compact decoder since its code is small and the vectorsbase_w anddisp
only containlmax elements each. For Zipf-200 on a 32 bit processor,lmax = 10 andw = 32,
sothe two vectors use a total of 80 bytes. Even for Zipf-400, that is 400 opcodes, a mere
eight more bytes are needed.

But in general, this search is way too slow. The next section shows a better approach
flexible in space and in speed.

4. Fast decoding

To increase speed, the linear search for the length of the opcode should be eliminated.
This is done by a table look-up using the leftmostk bits of rd. The table contains branching
addresses at which either decoding continue or the virtual instruction is emulated.

For the table look-up onk bits, three situations can arise:

(1) The opcode is recognized.
(2) The opcode is not recognized but its length is known.
(3) The opcode is not recognized and its length is unknown.

Case 1 is ideal, which occurs for all opcodesc wherelc ≤ k. A direct jump is done to
the implementation of the virtual instruction. In case 2, the length of the opcode is used to
compute its index by Eq. (1); then a jump to the implementation of the virtual instruction
is done. In case 3, the next bits are used to continue decoding using another look-up. Thus,
the decoder has a tree structure where each interior node is case 3, simply called type 3
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Table 2
Zipf-200 and timing for two decoders

i opcode TreeD1 TreeD2
ν Time ν Time

1 000 a 7 a 7
2 0010 a 7 a 7
3 0011 a 7 a 7
4 0100 a 7 a 7

. . . . . .

15 100010 a 7 a 7
16 1000110 b 17 a 7
17 1000111 b 17 a 7
. . . . . .

31 1010101 b 17 a 7
32 1010110 e 14 a 7
33 10101110 e 14 a 7
34 10101111 e 14 a 7
35 10110000 b 17 a 7
. . . . . .

62 11001011 b 17 a 7
63 11001100 d 14 a 7
64 11001101 d 14 a 7
65 110011100 d 14 b 17
66 110011101 d 14 b 17
68 110011111 d 14 b 17
69 110100000 b 17 b 17
. . . . . .

124 111010111 b 17 b 17
125 111011000 c 14 b 17
126 111011001 c 14 b 17
. . . . . .

135 1110111110 c 14 b 17
136 1110111111 c 14 b 17
137 1111000000 b 17 b 17
138 1111000001 b 17 b 17
. . . . . .

199 1111111110 b 17 b 17
200 1111111111 b 17 b 17

nodes. In case 1 and 2 we have leaf nodes, simply called type 1 and 2 nodes. Note that each
type 3 node requires a vector of addresses of its own, whereas type 2 nodes share the same
vector.

In general, type 3 nodes do not use the same number ofk bits to do a table look-up. For
a nodeν of type 3,kν is the number of bits used to do the table look-up. In particular,kr

denotes the number of bits used by the rootr of a decoder.
Nodes of types 2 and 3 consume some CPU time. The time spent in a node of typei is

denotedti . Note thatt1 = 0 because no further decoding is needed for type 1 nodes. These
timing values do not have to correspond to any real unit of time, but simply be relative
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to a known base value. For example, they could be approximated by the number of host
processor cycles used at each node.

We denote byT(D) the total time of a decoderD. It is the weighted sum of all decoding
paths for all codes. More precisely, letC represents the set of codes decoded byD, Pc the
set of nodes in the path from the root to the leaf of codec, fc thefrequence of codec, and
tν (i.e. t1, t2, or t3) the execution time of nodeν. Then

T(D) =
∑
c∈C

fc
∑
ν∈Pc

tν . (2)

To evaluatethe space taken by the decoder, three constants are used:sa is thenumber
of bytes of an address (e.g. 4);s2 is the number of bytes used by the machine code
implementing a type 2 node ands3 is for a type 3 node. We therefore take into account
the space for look-up tables and the code to implement the decoding.

The total space taken by a decoderD is denoted by S(D). More precisely, letkν

represent the number of bits used by the index of the look-up table of nodeν of type
3, andν the type of nodeν. Then the space taken by a nodeν is

s(ν) =



0 if ν = 1
s2 if ν = 2
2kν sa + s3 if ν = 3.

(3)

The total space of a decoderD is

S(D) =
∑
ν∈D

s(ν). (4)

For example,Fig. 4 presents two decoder treesD1 and D2 for Zipf-200. They were
automatically generated by our tool. DecoderD1 does, at the root, a table look-up using
six bits, and has three internal nodes doing table look-ups using four, three and two bits;
whereas decoderD2 does, at the root, a table look-up using eight bits and has one type 2
node. Note that there are opcodes of up to tenbits, but no table look-up is done using that
many bits. The total space for decoderD1 is 563 bytes and forD2 it is 1084 bytes. The
average decoding time forD1 is 15.93 and forD2 it is 13.8.

In Table 2each opcode is shown along with the final node of decoding by the two
decoders and corresponding relative time.

Given a space constraint, the basic parameterssi and ti , and the (static or dynamic)
frequencies of the opcodes, we generate the fastest decoder. A branch and bound algorithm
to do so is presented in [18]. It searches from the fastest to the slowest decoders, pruning
its search using the fastest found decoder so far, and when the space constraints are met, it
stops. For all our experiments, it takes a few seconds to find the fastest decoder.

To construct the decoder structure, the algorithm is general enough to accept static or
dynamic (run-time) opcode frequencies. Dynamic frequencies are harder to obtain as they
not only depend on the program samples but also on the input data of those programs. It is
up to the designer of the virtual machine to assessthe accuracy and relevance of dynamic
frequencies and use them when they greatly differ from the static ones. On the other hand,
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Fig. 4. Two decoder treesD1 and D2 for Zipf-200, generated using the parameterssa = 4, s2 = 30, s3 = 25,
t2 = 10, t3 = 7. We havekc = 4, kd = 3 andke = 2.

Gregg and Waldron [11] have shown that dynamic frequencies are not that useful compared
to the static ones.

5. The decoder C code

Fig. 5 shows the general structure of the C code for canonical decoders. All
mathematical terms, such as(w − kr ), become constants in the generated C code; for
this term,w is the number of bits ofrd andkr is the number of bitsfor the index used
at the root of the decoder for the table look-up. Similarly a term as complex looking as
base(Ct2)i + disp(Ct2)i becomes a constant since it can be computed statically.

Decoding begins at labelL_decode. There isa label L_i for each case where more than
one opcode of lengthi is not directly recognized by a node of type 3. These are type 2
nodes. There is a labelLp_prefix for each node of type 3, whereprefixcorresponds to the
prefix of all codes for that node. For each virtual instructionmnethe labelImneis the entry
point of its implementation.

Line 1 loads, if necessary, some additional bytes inrd. The exact C code for this
depends on the form of memory access used as discussed inSection 6. The incoming bits
are justified in the high part ofrd andnb_rd is adjusted to contain the number of bits in
it. It always loads a multiple of eight bits, since the program counter points to a byte in
memory, butrd doesnot necessarily contain a multiple of eight valid bits.Fig. 6presents
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L_decode:
1 {Transfer bytes from program tord

such that it has at leastlmax bits,
and increasenb_rd accordingly. }

2 crd = rd >> (w − kr );
3 goto *adr_[crd];
L_i : /* opcodes of length i (type 2) */
4 crd = rd >> (w − i );
5 goto *adr_inst[crd - base(Ct2)i + disp(Ct2)i ];
Lp_prefix: /* sub-decoder (type 3) */
6 crd = rd >> (w − lprefix − kprefix);

7 goto *adr_prefix[crd-v(prefix)2kprefix];
Imne:/* C code for mne (type 1) */
8 { If mnehas parameters, transfer them topi }

/* eliminate opcode and parameters */
9 rd <<= (lopcode+lparm);
10 nb_rd -= (lopcode+lparm);
11 { C code to emulatemne}
12 goto L_decode;

Fig. 5. General C codeof opcode decoders.

#define BYTE(i) (unsigned int)prgm[pc+i]
rd |= (BYTE(0) << 24 | BYTE(1) << 16

| BYTE(2) << 8 | BYTE(3)) >> nb_rd;
pc += (32 - nb_rd) >> 3;
nb_rd += (32 - nb_rd) & ˜7;

Fig. 6. A simple technique for line 1 ofFig. 5.

a simple and inefficient portable implementation for line 1, forw = 32.Section 6presents
better portable techniques.

Line 2 is the root of a decoder where the first look-up is done; line 3 jumps to a type 2
or 3 node, or to the emulation of a virtual instruction.w − kr is a constant. At line 5, the
termbase(Ct2)i + disp(Ct2)i is a constant:base(Ct2)i is thei th value ofbasew/2w−i but
wherebasew is definedusing only the codesCt2, that is all codes treated by type 2 nodes.
Using this subset ofC might very well decrease the length of vectoradr_inst. To be
more precise, all addresses of vir tual instructions inadr_ are not duplicated inadr_inst.
They also do not appear in any vectorsadr_prefixfor type 3 nodes. The vectordisp(Ct2) is
the corresponding vector ofbase(Ct2). Line 5 necessarily jumps to a virtual instruction. In
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line 6, the termw− lprefix−kprefix is a constant,lprefix being the length of the prefix andkprefix

thenumber of bits decoded by this node. So the shiftingrd >> (w − lprefix− kprefix) leaves
in crd not only thekprefix bits to decode but also the previouslprefix bits. Line 7 applies the
proper adjustment using the termv(prefix)2kprefix, which isthe extra value left inrd before
this node. This avoids shifting some bits out ofrd until the end of decoding.

At line 8, decoding is complete and this is the emulation of the virtual instructionmne.
If mnehas some parameters, they are obtained here. This may use up all bits in rd or
just part of them; it may also access memory. In most cases, bits should transit throughrd.
What lines 9 and 10 say, which is done differently depending on memory access forms (see
Section 6), is that rd should contain the following bits andnb_rd should be maintained
accordingly.

Finally, line 12 returns to the beginning of the decoding cycle. Again, this depends on
the form of memory access as presented inSection 6. It could return to a point in the
block of line 1 where it loads a specific number of bytes according to the number of bits
consumed bymne.

6. Prefetching of code

One important part of the decoder C code was left unspecified, namely line 1, which
loads bytes from memory into rd. Fig. 6presents one possible simple implementation for
line 1, wherew = 32, but it was quickly discovered to be very inefficient. We investigated
several other portable ways, three of which are reported in this section.

Getting opcodes and operands from memory intord can be time consuming since
multiple byte loads and bit manipulation operations are possibly needed. We have
explored three different techniques to access memory. The first one, form-a, is simple, but
shows major slowdowns on many benchmarks. The other two, form-b and form-c, show
competitive speed; form-c being often faster than form-b but using more space for the
interpreter. Our algorithm to generate decoders provides the option of using one of these
three forms. Benchmarks inSection 7show their relative merits.

The different prefetching methods are not used to mitigate the lack of caches or
reduce the number of bytes read from memory. They are used to: reduce the number of
instructions, in particular conditional branch instructions, for deciding how many bytes
from memory need to be read to decode the next opcode; or reduce the number of merging
operations, which requires executing several instructions, withrd.

For all forms, enough bits are inrd to go through the decoding tree, that is decode any
opcode through the multiple level decoder, without accessing memory. This can simply be
done by having at leastlmax, the length of the longest opcodes, valid bits inrd.

6.1. Simple form (form-a)

This version loads, from memory inrd, as many bytes as possible without shifting out,
to the left, valid bits from it. It uses the number of valid bits inrd to load the minimum
number of bytes necessary to maintain betweenw − 7 andw valid bits in rd. Thiscan be
done using a case analysis based on the value ofnb_rd, reading from memory the required
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bytes, shifting them to the left, and merging them tord. Thenumber of bytes to read is
�(w − nb_rd)/8� and the number of bits to shift to the left is(w − nb_rd) mod 8.

The advantage, compared with the code ofFig. 6, is a reduced number of memory
accesses, bitwise ‘or’ operations, and shiftings.

The disadvantage is several comparisons to branch to the code for loading the
appropriate number of bytes; and there are more mergings than form-c (see below) since
more cases of one byte merging occurs.

6.2. Several-roots form (form-b)

In this form, as in the previous form-a, there are betweenw − 7 andw bits in rd at the
beginning of the decoding tree. But instead of one entry point with complex verification
of the number of bytes to load, there are several entry pointsrx to the rootof the decoder
each one loading eitherx or x + 1 bytes. The implementation of these two cases is faster
than the general selection of form-a since a single simple comparison is enough.

This form is possible, since each virtual instruction knows the number of bits extracted
from rd (at lines 9 and 10), so that it almost knows the number of bytes to load inrd after
its emulation. Indeed, suppose that a virtual instruction usesb ≤ w − 7 bits, including
its opcode. At the entry of its implementation there are betweenw andw − 7 bits in rd,
therefore there are, after its emulation, betweenw − b andw − b− 7 bits remaining inrd.
So, there are between (A)�(b− 1)/8	 and (B) 1+�(b− 1)/8	 bytes toload inrd. If b is a
constant, that is the instruction has a fixed length, which is a common case in practice, it is
possible to jump to the proper rootrx without any test or computation. Ifb is not a constant,
the virtual instruction implementation has to do some computation and test the number of
bits left in rd anyway. This value is used to branch to the proper rootrx of the decoder. In
the case whereb > w−7, the virtual instruction itself has to load bytes from memory, thus
also knows, after its emulation, the exact number of bytes to load. Note that no dynamic
test is done to verify between cases (A) and (B), ifb is a constant: it is hardcoded in the
implementation of the interpreter. Otherwise, that is for a variable length instruction, some
run-time tests should be done to branch to the proper rootrx of the decoder.

In some way, the proper number of bytes to load falls back to each virtual instruction
which simply branches to one of the roots that does one integer relational test between a
constant andnb_rd.

This is the advantage of that method compared to form-a: there is no need to compute
the value�(w − nb_rd)/8� to know the number of bytes to load, and then to branch to
the proper case which needs several comparisons; when the instruction is of fixed length, a
simple single comparison is enough for form-b. But compared to form-c (see below) it still
suffersfrom many small mergings of one byte.

The disadvantage of this method is a slightly bigger decoder due to multiple decoder
roots.

6.3. Conditional form (form-c)

In this form, memory is accessed at the root, if and only ifnb_rd is less thanlmax, the
length of the longest opcodes. This value ensures that the tree decoder itself does not have
to access memory to decode any opcode. Ifnb_rd is less thanlmax, as manybytes from
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memory as possible are merged tord. This means that access to memory is delayed as
much as possible.

For example, iflmax = 14,w = 32, andnb_rd = 6, three bytes are loaded and merged
to rd; if nb_rd = 15 no bytes would be merged tord.

The main advantage of this method is a reduced number of merging operations tord.
As a matter of fact, experiments show that this is in most cases the fastest approach.

The disadvantage is a larger interpreter, since if the virtual instruction uses more than
lmax bits, for its operands, it is necessary to verify if there are enough bits inrd to access
them. This case occurs less frequently in form-b for which there arew − 7 bits in rd after
decoding the opcode (assuminglmax < w − 7).

7. Experimental results

In order to evaluate our approach, we applied it to the Java Virtual Machine (JVM) on
ten benchmarks [1] and the entire JDK 1.0.2 library; to theScheme language on seven
benchmarks and the R4RS library; and to six synthetic benchmarks to demonstrate the
worstcase scenarios.

For all benchmarks two processors are used: a 600 MHzPentium III and a 200 MHz
Sparc Ultra-1 with respectively 32 KB and 1 MB level 1 cache. All C programs were
compiled usinggcc version 2.8.1for SunOS and version 2.91.66 for Linux with the same
optimizing parameter, namely-O3.

7.1. Java benchmarks

We use the Java Virtual Machine to demonstrate our approach on a widely available
bytecode using Harissa [22]. Most virtual instructions’ implementations are unchanged
but branching instructions are modified to branch on non-byte boundaries. Harissa uses a C
switch statement to decode bytecode instructions. All cases of this switch are transformed
into C macro-instructions and are used by the tool to automatically generate the interpreter
of the compressed code that is the implementation of macro-instructions and instructions
that use new formats. The switch is removed and replaced by an opcodes decoder
automatically generated from our tool.

The training set is the fileclasses.zip, i.e. the set of libraries from JDK 1.0.2,
containing over 400 class files. The total bytecode size is 270932 bytes. Note that the
benchmarks (see below) were not used as a training set. This may represent an embedded
design where the standard libraries and thevirtual machine are placed in ROM but where
executed programs are downloaded in RAM. In this experiment, the benchmarks would
take the rolesof downloaded programs.

After training, the resulting shortest opcode has three bits and the longest opcodes
have twelve bits. Forty of the existing instructions were duplicated but with shorter
parameter fields, resulting in a JVM machine of 241 instructions. This extension was
done automatically by our tool to generate virtual instruction sets from samples of
programs [17]. The sole choices of macro-instructions and parameter lengths were done
to better compress the library classes and not for speed.
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Table 3
Absolute execution time, in seconds, for the original (i.e.
non-compressed) Java benchmarks with modified Harissa
JVM on Pentium andSPARC; and the size of the original
bytecodes

Benchmark Absolute time Code size

Pentium SPARC in bytes

NeuralNet 27.8 46.64 7467
FPemulation 3.82 5.29 3724
IDEAencryption 5.40 6.46 1800
Assignment 1.49 2.42 1634
LUdecomposition 3.29 4.60 1602
StringSort 7.68 10.35 1541
Huffman 2.50 3.98 1395
BitfieldOps 5.11 6.21 833
NumericSort 2.75 3.99 773
Fourier 1.83 2.24 640

JVM compression Pentium Ckr =7 Pentium Ckr =10 SPARCCkr =7 SPARCCkr =10
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Fig. 7. Relative speed and compressionfactors (i.e. compressed code size/original code size) of Java benchmarks
with modified Harissa JVM.

It took around twenty minutes of CPU time (on a 600 MHzPentium III) to create the
new instruction set (i.e. macro-instructions, new formats, and opcodes). It took less than
ten seconds to generate the C code of the new JVM.

For thelibraries, that isclasses.zip, a 0.609 compression factor (i.e. compressed
code size/original code size) is obtained.

Fig. 7 presents the timing results and the compression factors of bytecodes for the
BYTEmark Java benchmarks [1]. The execution times and sizes of the non-compressed
bytecodes are presented inTable 3. These are moderate size benchmarks suited to evaluate
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the speed of JVM implementations. The compression factors take into account the
compression of opcodes, the compact operands, and the use of macro-instructions. They do
not take into account the decoder sizes or the increase or decrease in the interpreter size. As
we discussed in the introduction, this is to separate the space taken by the virtual machine
and the space taken by the virtual programs. The overall compression should take into
account all programs loaded into the systems, the libraries needed to run them, and the size
of the interpreter, including the new decoders. Obviously, this depends on the application
used. If the application’s overall size is 100 KB for the original bytecode, including the
libraries, we may expect a saving of around 40%, that is 40 KB. The increased size of the
decoder may be largely offset by this saving. Below, we give the size of the decoders used
to decode compressed programs compared with the uncompressed decoder.

The speed is relative to the execution of the uncompressed original bytecode on the
original Harissa JVM. Note that all these programs execute some part of the JDK libraries
classes.zip. Slight speedups are observed: they are mainly due to the inlined macro-
instructions which increase speed of execution.

We use memory access form-c with two decoders having the following structures: (1)
kr = 7, five nodes of type 2, namelyL8−12, and three nodes of type 3, all directly below
the root; the sum of table sizes is(27 + 5 × 24 + 3 × 25) × 4 = 1216 bytes; (2)kr = 10,
two nodes of type 2, namelyL10−11, and one node of type 3; the sum of table sizes is
(210 + 2 × 24 + 22) × 4 = 4240 bytes. Assuming that the original bytecode decoder
could use a simple flat look-uptable of 256 entries of four bytes each, its size would be
1024 bytes. Therefore, forkr = 7 the sizeof the tables for the decoder increases by 192
bytes; forkr = 10 it increases by 3216 bytes. If the space of the virtual machine is a
strong concern, thekr = 7 decoder adds a very small amount of space to the overall virtual
machine; whereas, if the virtual machine is stored, let’s say in ROM, for which sufficient
space would still be available, it would be better to use thekr = 10 decoder to increase
speed.

The SPARC processor shows the best average slowdown of 9.3% forkr = 10.
One advantage of theSPARC is a largernumber of registers available compared to
the Pentium. The overall speed is sensitive to register availability, since the interpreter
frequently accesses the variablesrd, pc, andnb_rd. These should be kept in registers to
have good performance. ThePentium assembly code reveals that not enough registers are
available to do that.

The worst speed results are the Fourier and Bitfieldops benchmarks. This is due to the
frequent execution of instructions having long opcodes and small granularities (i.e. the
amount of processing done by the instructions). Some of them are floating-point virtual
instructions, not statically frequent inclasses.zip. They also do not access object fields
as frequently as the other benchmarks. Since thegetfield andputfield instructions
have a moderate granularity, they increase execution time compared to decoding. On the
other hand, Assignment, StringSort, NeuralNet, NumericSort, and LUdecomposition show
a small slowdown.

The benchmarks Assignment, StringSort, and NeuralNet have a large number of virtual
method calls as well as field accesses. As mentioned, field accesses hide decoding
overhead, and this is also true for method invocation, be it static or virtual. They show
little slowdown for theSPARC with a good performance for thePentium.
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Table 4
Original (not compressed) code size ofScheme programs
and their absolute execution time in seconds, onPentium
andSPARC

Program Code size in bytes Pentium SPARC

libR4 32040 N/A N/A
conform 28599 11.70 32.84
earley 26271 1.70 4.14
qsort 5827 1.83 5.54
destruct 3371 0.79 2.16
mm 2550 3.70 9.26
tak 582 1.55 4.35
fib 169 1.76 4.74

Half of the benchmarks have a 40% reduction in size with a negligible slowdown
(≤3%).

The work of Clausen et al. [5] presents the compression of JVM bytecodes compared
with gzip. It is applied separately on each method. Thegzip compression factors vary from
0.66 to 0.91. Our technique gives better compression factors.

7.2. TheScheme language

Our approach has also been applied to theScheme language [17]. From a general
stack machine calledMachina our tools create a new set of instructions calledSchemina.
Machina has only 41 instructions.

This experiment is quite different compared to the JVM as it starts from a very simple
and general virtual machine not tailored forScheme. Due to the non-optimized bytecode
encoding, the compression factors obtained are better than for the JVM. Essentially, more
useful macro-instructions were discovered and they were longer.

The training set (i.e. the samples of programs) was a subset of the R4RS Scheme library
(called libR4 in Fig. 9) and seven benchmarks. A total of 112 instructions were generated
by our tools, including the 41 original ones.

Fig. 9 compares the compression factors of our technique withgzip applied to the
original bytecode. The original code sizes are presented inTable 4. We only used it to
compare compression performances sincegzip encoding cannot be executed without prior
decompression.gzip can have better performances for two major reasons: it compresses
disregarding basic block boundaries, and it disallows non-sequential decompression.

In several cases our approach is close or better thangzip and we can still efficiently
execute our compressed code.

Fig. 8 presents, relatively to the uncompressed originalMachina programs, execution
time of the compressedScheme programs. The absolute times for the original (i.e. non-
compressed) programs are presented inTable 4. For several benchmarks there are speedups
since macro-instructions increase speed and many of the new instructions have short
opcodes and operands.
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Fig. 8. Relativeexecution time of compressedScheme programs, using form-c onPentium (top) and
SPARC (bottom) for several decoders.
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Fig. 9. Compression factors (i.e. compressed code size/original code size) forScheme programs compared to
gzip.
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Table 5
Absolute time, in seconds, to execute uncom-
pressed programs, based on Zipf-20

Pentium SPARC

M1 M2 M3 M1 M2 M3
0.38 0.45 0.81 2.13 2.56 5.08

M4 M5 M6 M4 M5 M6
0.40 0.49 0.85 2.32 2.83 3.76

7.3. Synthetic benchmarks

The Java and Scheme benchmarks demonstrate the applicability of the approach in a
realistic setting. But it raises the question of hidden overhead by the emulation of the virtual
instructions. Also, inlined macro-instructions increase speed. Therefore, we also present
synthetic benchmark timings, where the frequency of instructions, their granularity, and
theiroperand lengths are precisely defined; there are no macro-instructions used for these.
In other words, the synthetic benchmarks more clearly show the overhead of Huffman
decoding and non-byte alignment.

For the synthetic benchmarks, we use six virtual machines of different granularities
allowing better measurement of decoding overhead. They all have twenty instructions,
without parameter for the first three machines, but for the last three machines, six
instructions have a parameter of length 2, 2, 3, 4, 5 and 7 bits. The opcodes are encoded
based on Zipf-20 probabilities.

In the first machine, all twenty virtual instructions add one to an integer counterci ; in the
second machine each instruction does two additional integer operations; in the third one,
each instruction does two additional memory accesses to simulate a stack. Machines 4–6
have parameters and do the same work as machines 1–3 respectively, but six instructions
have parameters and add them to their own counterci . We use the same program for the six
machines: it is a sequence of the twenty instructions, from instruction 1 to 20, performing
4 × 105 iterations; that is the last instruction does a jump to the first instruction which
stops the execution when counterc1 reaches this value. The opcodes are compressed based
on the Zipf-20 probabilities which have an average length of 3.6 bits. Three decoders are
applied on all six machines executed on two host processors.

An interpreter was used to decode the uncompressed programs. These programs
are bytecoded: one byte for each opcode and twobytes for an operand, if applicable.
The decoding is a computed branch, indexed by the opcode, to the virtual instruction
implementation. Each implementation loads its operands, emulates the operation and
jumps back to the beginning of the decoding cycle.

Fig. 10 presents thetiming results for compressed programs, relative to the
uncompressed ones. The absolute times are presented inTable 5. The simple memory
access form-a is disappointing but form-b and form-c are good. The two forms are close in
performance even though form-c is often the better. Since form-b generates more compact
interpreters there is an informed trade-off to make.
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Fig. 10. Relative time to execute compressed programs, based on opcodes from Zipf-20 probabilities, for six
virtual machines, three decoders, three memory access forms (form-a, form-b and form-c), onPentium (top) and
SPARC (bottom).

As expected, thebest results are obtained for machine 3, since the instruction
granularities hide some overhead of decoding. In particular, onPentium andSPARC there
is an acceleration for the parameterless instructions. This is due to the reduction in memory
accesses and extraction of operands. Withkr = 6, decoding is done in one step, and most
often the next opcode is inrd, which is, in these benchmarks, a processor register.



314 M. Latendresse, M. Feeley / Science of Computer Programming 57 (2005) 295–317

From this experiment we can conclude that even with virtual instructions doing almost
no work, as in machine 1, and with a small decoder, the decoding is around a 50% overhead
(as in form-c used with a kr = 4 decoder). This is an extreme artificial setting aimed to
demonstrate the worst case performance. On the other hand, if we have instructions with
no parameter and enough granularity, a speedup can be observed. This is probably due to
a reduced number of accesses to memory asrd is most of the time loaded with more than
oneinstruction; this is not the case with the original bytecode. But we have not explicitly
verified this hypothesis.

7.4. Summary of the experiments

In conclusion, for JVM, the average compression factor is around 0.6 for 400 classes of
the JDK 1.0.2 and the ten benchmarks. For half of the benchmarks, the slowdown is hardly
noticeable. This shows the practicality of the approach. The synthetic benchmarks show
more explicitly the overhead of decoding our compressed bytecode, demonstrating that
even a speedup can be achieved in some cases without macro-instructions. TheScheme
results show that starting from a very general machine, our compression creates efficient
and compact instructions. They also show that we can come close togzip compression
performance and still efficiently decode the compressed instructions.

8. Related work

The compression of bytecodes for virtual machines was addressed by Wilner for the
SDL language on Burroughs B1700 [29]. It uses Huffman codes but decoding was done
bit by bit by the microcode. This is too slow to be practical at the software level.

Patterson and Henessy manually designed a compact native instruction set by studying
sample programs generated from C code [23].

Decoding of Huffman encoded instructions has also been studied at the hardware level
by several researchers [16,19,2]. They usually decompress between the memory and the
instruction cache. They do not use fast decodingmethods applicable at the software level.

Ernst et al. [9] compress native code by generating a tailored VM, using macro-
instructions and fixing parameters, from the intermediate form emitted by a C compiler.
It is similar to Proebsting’s work [24]. Their technique is competitive withgzip on native
code. But it is not reported if the compression obtained is due to the use of the VM or the
compression of the virtual program. Moreover, no timing of the execution of compressed
programs is reported.

Cooper and McIntosh [6] reduce program size by replacing particular repetitive
sequences of instructions with a branch. The code saving is on average 5%. Cooper et al.
[7] searches, using a genetic algorithm technique, a combination of compilation techniques
to reduce code size. These works differ from ours since they are done on native code and
no Huffman encoding and argument compacting are applied.

Pugh [25] applies several techniques to compress Java class files. This work differs from
ours since decompression is performed before execution.

The work of Rayside et al. [26] also applies to class files, butthese techniques do not
apply to the bytecode itself.
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Hoogerbrugge et al. [12] uses asimilar strategy of the Thumb and MIPS16 processors
[28,15] to compress some parts of the program. But instead of applying compression
on the binary executable, they automatically generate a tailored virtual machine for the
intermediate form of the C program. When the intermediate form is translated into a
virtual program, frequent sequences of virtual instructions are replaced by one opcode.
This particular technique gives a 30% reduction in size compared to the virtual program.
Our work is complementary by further reducing the size of the virtual programs using
compressed virtual instructions.

Lucco [20] applies compression to x86 native code using a dictionary technique to keep
track of repeated short sequences of instructions. At least one decompression is performed
before the execution of a basic block, requiring a buffer space to keep the decompressed
copy. Our work differs as we apply it to the context of virtual machines and directly decode
compressed instructions.

Clausen et al. [5] compresses bytecode by replacing repetitive sequences of JVM
instructionsby macro-instructions. They obtain an average compression factor of 0.85 with
a slowdown from 19% to 27%.

The work of Evans and Fraser [10] has an identical goal as ours: direct execution
of compressed bytecode. The compression technique is based on the modifications of
a grammar of the bytecode. Their technique avoidsvariablelength instructions contrary
to our technique. Good compression factors on large programs are obtained although no
execution times are reported. This technique could be combined with ours to cover a larger
range of program sizes; but, we believe, to the detriment of execution speed.

Debray and Evans [8] usecanonical Huffman code on binary executables, but using the
slow decoding technique as inSection 3.1. They avoid compression on frequently executed
parts of the code to obtain reasonable execution speed.

In general, our approach differs from these previous approaches as we interpret com-
pressed virtual instructions directly without an explicit partial or whole decompression,
avoiding using any additional RAM, and moreover it is done over variable bit-length en-
coding, specifically Huffman encoding of operational codes.

9. Summary

This work has shown that decoding canonical Huffman encoded opcodes, at the
software level, in the context of virtual instructions, can be done efficiently. The speed of
decoding increases with the size of the decoder. A general structure of compact decoders
has been shown to be effective, permitting a gradual trade-off between speed of decoding
and space constraints.

Huffman decoding is not the only difficulty for quickly interpreting compressed virtual
instructions, memory access for variable length bit fields is also important. Two prefetching
techniques were shown to achieve good results.

The efficiency of the decoders has been demonstrated on simple synthetic benchmarks,
on theScheme language, and on Java benchmarks showing an average slowdown ranging
from 2% to 27% depending on the processor and the size of the decoders. Half of the Java
benchmarks have a 40% reduction in size with a negligible slowdown (≤3%).
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