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Abstract

Embalded systems often have severe memory constraints requiring careful encoding of programs.
For example, smart cards have on the orderl#f of RAM, 16K of non-vdatile memory, and
24K of ROM. A virtual machine can be an effaa goproach to obtain compact programs but
instructions are commonly encoded using one byte for the opcode and multiple bytes for the
operands, which can be wasteful and thus limit the size of programs runnable on embedded
systems. Our approach uses canonical Huffman codes to generate compact opcodes with custom-
sized operand fields and with a virtual machine that directly executes this compact code. We present
techniques to automatically generate the new instruction formats and the decoder. In effect, this
automatically creates both an instruction set for a customized virtual machine and an implementation
of that machine. We demonstrate thatthout prior decompression, fast decoding of these virtual
compressed instructions is feasible. Through experiments on Scheme and Java, we demonstrate
the speed of thse decoders. Java benchmarks show an average execution slowdown of 9%. The
reductions in size highly depend on the original bytecode and the training samples, but typically vary
from 40%to 60%.
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1. Introduction

Embedded systems are resource-constrained devices requiring careful attention to
memory usage and power consumption. To attain these goals, several researchers are taking
the gproach of reducing program siz6,15,14]. We focus on the context where code
decompression cannot be performed prior to the program’s execution. This constraint is
reasonable for embedded systems where a bulk decompression of programs, or even parts
of programs, before execution, might exceed the available RAM.

Embedded systems typically contain both RAM and ROM memory and in most systems
ROM is much lager than RAM. If RAM is used to store program code, for example
by downloading software from a server, atite virtual machine is stored in ROM, it
is advantageous to use all the ROM spéci reduces RAM usge for programs. As
demonstrated in this paper and by some other researc®grgfis may &en inaqease
execution speed. Therefore, in some cases, the compressiont fdotald be measured
only for the bytecode stored in RAM with th@wstraint thathe virtual machine fits in
ROM,; the objective is not to create a small virtual machine but rather to increase its size
—as much as the ROM allows r order toreduce the size of the program stored in RAM
and/or increase execution speed.

In other situations, the size of the bytecode and the virtual machine must be taken into
account: for example, when they are botagdd in ROM, and the RAM is solely used for
dynamic data. In such cases, the compression factor should be based on the bytecode and
virtual machine sizes.

Some researcherd224,9] have shown the virtues of reducing code size, without
decompression before execution, by using bytecode interpreters tailored for one program.
Compression of the bytecode, capable of direct execution without decompression, would
further reduce code size. Other research&@slp,3] have gated the possibility of using
Huffman codes to compress bytecode, usu@llgonclude that if the decoding is done in
sdtware it increases execution tarto an unacceptable level. IrnLf)], it is further argued
that the faster technique of look-up tables, udiriits, as presented id], uses a significant
amount of space. Our solution is to use canonical Huffman c@deahd severbsmadler
look-up tables to keep the total size small. Reducing space taken by operands is also
important since they usually account for a large part of the code size. Instruction formats
with small opeand fields can further reduce size. The main goal of this paper is to show
that there are techniques to efficientlgcode such compressed instructions.

Typically, virtual instructions arelfyte encoded”: operatioheodes (opcodes for short)
and operands are encoded in byte units. This method trades space for speed by maintaining
byte, or even word, alignment and a fixed length for all opcodes. In this work, we use
a \variable bit-length encoding for a more compact form. We show that using canonical
Huffman code for opcodes, new customizedrinstion formats, replacement of sequences
of repetitive instructions by one opcode aralhyte boundary alignment can significantly
reduce bytecode size and still allow fast direct execution by an interpreter. For speed,
canonical Huffman codes should not be decoded bit by bit; instead, blo&Ksitsfshould

1The conpression factor is the length (size) of the congsedd codéivided by the length of the uncompressed
code (original bytecode). Therefo@ganadl factor means a good compression.
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Fig. 1. Creation of instruction sets decoder and interpreter.

be used. Such an idea has been explored previously by Turpin and Miffat\le have
extended their work to allow multipl& bit look-ups and generate decoders given a space
constraint.

Our gproach assumes automation. The decoders, the interpreters, and compressed
instruction set, are all automatically mgrated (in C) by a tool. They are generated
by specifying space constraints and providing a corpus of sample bytecode programs.
Therefore, in our approach, the design of virtual machines and instruction sets for
compressed programs can be automated. This context allows two application areas for
the work presented in this paper. The first one is the design of virtual machines, such as the
KVM for Java, aimed at embedded systems with memory constraints. This could be done
for any language. The construction of such machines should be done based on a careful
analysis of program samples. The second application is the compilation of programs where
code space is a major concern. In that caséstaal machine tailored for the program can
be used to reduce space. This is the approach tak&a,R¥[9]. Further code size reduction
can be obtained with a compression of the virtual instructions.

In the next section, we give a generakgentation of the compression algorithm.
In Section 3canonical Huffman codes are presented along with a compact but slow
decoding methodSection 4presents much faster but giitly less compact decoders.
Section 5explains the C code’s structure for all canonical decod8extion 6discusses
how decoders access memory for opcodes andanps. Experimental results showing
that the approach is practical are presente8eaation 7 Section 8presents some of the
relaed work.

2. The compression algorithm

Fig. 1presents our general framework. The sample programs are bytecode encoded with
an unmodified compiler. The samples should be appropriately chosen to represent the code
that will be deployed. In particular, the same compiler should be used to create the samples
and the deployed code. An instruction set encoding to compactly represent the samples
is then generated by adl. This requires an analysis of the instruction frequencies, the
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length of operands, etc., in the samples. The decoder is generated given a space constraint
parameter, along with the interpreter. The sizes of the decoder and interpreter are taken
into account to reduce program sizes. This approach is transparent for the compiler writer
since the compression of programs can be done from the original bytecode.

Our conpression approach creates new instructions and encodings for them. These
instructions are either macro-insttions that do te work of a sequence of other
instructions, or basic instructionsitiv a new format for the operands. We proceed as
follows to create them. From the program samples:

(1) A dictionary of (possibly overlapping) repetitive sequences is built. We limit the size
of this dictionary by limiting the lengthfdhe sequences and imposing a lower bound
on the frequency of occurrence in the samples.

(2) A dictionary of formats to encode all basic instructions using as few bits as possible
is created. It includes the original fornsatf thevirtual machine in order to guarantee
that all possible prgrams can be encoded.

(3) A greedy algorithm repetitively selects either a new format or a sequence of
instructions, based on the maximum spsa&eng, until no space gain can be obtained.

The greedy algorithm takes into account the opcode lengths, the new formats, and the
space of the decoder. Further details on the selection algorithm can be foulid.in [

Henceforth, the following setting is usethhie opcodes are variable length canonical
Huffman codes generated using thetistdrequencies of the opcodes from sample
programs; and operands are uncompressed but of a length that is not restricted to a multiple
of eight bits. Thus, opcodes and operands ot byte-aligned. The branch offset of
branchinstructions is measunechits, but instructions following subroutine calls are byte-
aligned—return addresses are in bytes.

3. Canonical Huffman encoding of opcodes

We encode opcodes using canonical Huffman co@&gs [These are similar to Huffman
codes built by the original bottom up method @8], but the numerical values of the codes
of a given length form a consecutive sequence. As will be shown, they have a very compact
representation of the bijection between the codes and the encoded object.

Huffman @des are typically generated by incremaly building a binary tree. In the
case of canonical Huffman codes, the resultirgethas all its branches “pushed” to the
right (or left). Fig. 2shows some canonical codes mapped into a tree. The codes, when read
left to right at the leaves, are in order of non-decreasing lengths and in order of increasing
values. Moreover all the codes of a given length form a non-interrupted consecutive
sgjuence of binary values (for example, all the codes of length fout &re, 1101, 1110
andi111,i.e.12,13, 14 and 15).

Since we use canonical Huffman codes for opcodes, the two terms will be used
interchangeably; andanonicalwill often be dropped as we only use canonical Huffman
codes.

In the rest of this section we explain a compact representation of opcodes and an
efficient flexible decoding technique for them.



M. Latendresse, M. Feeley / Science of Computer Programming 57 (2005) 295-317 299

Root

1100 11011110 1111

Fig. 2. A canonical ascending Huffman tree.

Letl¢ be the length in bits of code(a canonical Huffman codey(c) its value,k > I
a onstant, and/¥(c) = v(c)2k~'e; in other wordsVK(c) is the value ot left justified in
ak bit processor register. Left justification allows the creation of a very compact decoder
as presented iBection 3.1

Let C = {c} be a set of opcodes angax their maximum length. Assume that the
opcodes are decoded in a variable (e.g. processor registerpité such thatw > lnax.
Define thevectorbasé’[1...1nax suchthatbasé’[j] is the smallest valu¥ ¥ (c) for all
codest suchthatl; = j. Define the vectordisg 1. . .lmax] suchthatdisg j] is thenumber
of codesc for whichl; < j. The ndex of code of lengthl. is:

V¥ (c) — basé’[I¢]
2w—lc

+ displlc]. (1)

If the length ofc is known, its index is gign by that equation. Given the index, a computed
branch would jump to the implementation of the virtual instruction.

To show examms of opcode frequencies, independently of a specific instruction set
and samples, assume th@robabilities p; of a special case of Zipf's lawp; = 1/(iHp),
1 <i < n, whereH, is thenth harronic numberZ?:l(l/j). Such probabilities model
well the static frequency ofistructions in programdable 1presents vectorsaseé’ and
dispfor the Zipf-200 opcodes partly listed Fable 2 Their aveage lengtf is 6.0267.

3.1. Very compact but slow decoding

Assume that the beginning of an instruction is left justified in a variatléAccording
to Eq. (1), decoding the opcode can be reduced to finding its length which can be done
by a sequential search ase Fig. 3 shows afragment of C code for this slow but very
compact decoder: Line 2 does the sequential search; the index of the code is calculated in
crd by line 3 using (); line 4 removes the opcode; line 5 does the actual branching to the
virtual instruction implementation (usingtc’s computedgoto).

2The averagéength isy 1 i< I pi where the opcode for the probabilify is ¢; and its length id; .
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i = Imax

while (rd < base_wl[i]) i--;

crd = (rd-base_w([i] >> w-1i) + displil;
rd <<= i;

goto *adr[crdl;

a b W N -

Fig. 3. C code for a very compact, but slowadder for canonical ascending Huffman codes.

Table 1
The \ectorsbase_w (akabasé’) and
disp (disp) for Zipf-200

i disp base’
1 0oo2w—3
2 00102w—4
5 010102w—°

9 0111002%6
16  100011G2w—7
33 1010111@w—8
6 11001110@w—°
135 111011111pw—10

O O©Woo~NOO AW

=

This is a very compact decoder saits code is small and the vectetsse _w anddisp
only contain s« elements each. For Zipf-200 on a 32 bit procedsg,= 10 andw = 32,
sothe two vectors use a total of 80 bytes. Even for Zipf-400, that is 400 opcodes, a mere
eight more bytes are needed.

But in gereral, this search is way too slow. The next section shows a better approach
flexible in space and in speed.

4. Fast decoding

To increase speed, the linear search for the length of the opcode should be eliminated.
This is done by a table look-up using the leftmbkéits of rd. The tdble contains branching
addresses at which either decoding continue or the virtual instruction is emulated.

For the table look-up ok bits, three situations can arise:

(1) The opcode is recognized.
(2) The opcode is not recognized but its length is known.
(3) The opcode is not recognized and its length is unknown.

Case 1 is idal, which occurs for all opcodeswherel: < k. A direct jump is done to
the implementation of the sual instruction. In case 2, the length of the opcode is used to
compute its index by Eqlj; then a jump to the implementation of the virtual instruction
isdone. In case 3, the next bits are used to continue decoding using another look-up. Thus,
the decoder has a tree structure where each interior node is case 3, simply called type 3
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Table 2
Zipf-200 and timing for two decoders
i opcode Tredq TreeD»
v Time v Time
1 000 a 7 a 7
2 0010 a 7 a 7
3 0011 a 7 a 7
4 0100 a 7 a 7
15 100010 a 7 a 7
16 1000110 b 17 a 7
17 1000111 b 17 a 7
31 1010101 b 17 a 7
32 1010110 e 14 a 7
33 10101110 e 14 a 7
34 10101111 e 14 a 7
35 10110000 b 17 a 7
62 11001011 b 17 a 7
63 11001100 d 14 a 7
64 11001101 d 14 a 7
65 110011100 d 14 b 17
66 110011101 d 14 b 17
68 110011111 d 14 b 17
69 110100000 b 17 b 17
124 111010111 b 17 b 17
125 111011000 c 14 b 17
126 111011001 c 14 b 17
135 1110111110 ¢ 14 b 17
136 1110111111 ¢ 14 b 17
137 1111000000 b 17 b 17
138 1111000001 b 17 b 17
199 1111111110 b 17 b 17
200 1111121111 b 17 b 17

nodes. In case 1 and 2 we have leaf nodes, simply called type 1 and 2 nodes. Note that each
type 3 node requires a vector of addresses of its own, whereas type 2 nodes share the same
vector.

In general, type 3 nodes do not use the same numbebit$ to do a table look-up. For
anodev of type 3,k, is the number of bits used to do the table look-up. In particldar,
denotes the number of bits used by the moof a decoder.

Nodes of types 2 and 3 consume some CPU time. The time spent in a node bfgype
denoted;. Note hatt; = 0 because no further decoding is needed for type 1 nodes. These
timing values do not have to correspond to any real unit of time, but simply be relative
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to aknown base value. For example, they could be approximated by the number of host
processor cycles used at each node.

We denote byT (D) the total time 6a dewderD. Itis the weghted sum of all decoding
paths for all codes. More precisely, [Btrepresents the set of codes decodedby; the
s of nodes in the path from the root to the leaf of cagd. thefrequence of code, and
ty (i.e.11, tp, ort3) the execution time of node Then

TD)=) fe ) t 2

ceC vePe

To evaluatehe space taken by¢ decoder, three constants are usgds thenumber
of bytes of an address (e.g. 4 is the nunber of bytes used by the machine code
implementing a type 2 node ars is for a type 3 node. We therefore take into account
the ace for look-up tables and the code to implement the decoding.

The total space taken by a decoderis denoted by S(D). More precisely, letk,
represent the number of bits used by the index of the look-up table of madeype
3, andv the type of nodev. Then the space taken by a nodis

0 ifv=1
s =1 ifv=2 (3)
fv=3

The total space of a decodpris

S(D) = Z s(v). (4)

veD

For exampleFig. 4 presents two decoder tre® and D, for Zipf-200. They were
automatically generated by our tool. Decod®r does, at the root, a table look-up using
six bits, and has three internal nodes doing table look-ups using four, three and two bits;
whereas decoddd, does, at the root, a table look-up using eight bits and has one type 2
node. Note that there are opcodes of up toltiés, but no table look-up is done using that
many hts. The total space for decodBr, is 563 bytes and foD> it is 1084 bytes. The
averlge decoding time fob4 is 15.93 and foD; it is 13.8.

In Table 2each opcode is shown along with the final node of decoding by the two
decoders and corresponding relative time.

Given a space constraint, the basic parameteendt;, and the (static or dynamic)
frequencies of the opcodes, we generatediseest decoder. A branch and bound algorithm
to do so is presented il §. It searches from the fastest to the slowest decoders, pruning
its search using the fastest found decoder so far, and when the space constraints are met, it
stops. For all our experiments, it takes a few seconds to find the fastest decoder.

To construct the decoder structure, the algorithm is general enough to accept static or
dynamic (run-time) opcode frequencies. Dynafnéquencies are harder to obtain as they
not only depend on the program samples but also on the input data of those programs. It is
up to the designer of the virtual machine &sesthe accuracy and relevance of dynamic
frequencies and use them when they greafffiedfrom the static ones. On the other hand,
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000-10001
10]é011

T1 T1 T1

Tree D1, S(D1) = 563, T (D7) = 15.93

kr - 8
000—11001%
a b
T1 T2

Tree Dy, S(Dy) = 1084, T (D)) = 13.8

Fig. 4. Two decoder treeB1 and D2 for Zipf-200, generated using the parametgys= 4, s, = 30,s3 = 25,
tp = 10,t3 = 7. We havec = 4,kg = 3 andke = 2.

Gregg and Waldronl[1] have shown that dynamic frequencies are not that useful compared
to the static ones.

5. Thedecoder C code

Fig.5 shows the general structure of the C code for canonical decoders. All
mathematical terms, such & — k;), become constants in the generated C code; for
this term,w is the number of bits ofd andk; is the number of bitfor the index used
at the root of the decoder for the table look-up. Similarly a term as complex looking as
bas&C!?); + disp(C'?); becomes a constant since it can be computed statically.

Dewmding begins at labél_decode. There isa lakel L_i for each case where more than
one opcode of lengthis not directly recognized by a node of type 3. These are type 2
nodes. There is a labep_prefixfor each node of type 3, whepeefixcorresponds to the
prefix of all codes for that node. For each virtual instructiomethe labelImneis the entry
point of its implementation.

Line 1 loads, if necessary, some additional bytesdn The exact C code for this
depends on the form of memory access used as discusSedtiion 6 The incaning bits
are justified in the high part afd andnb_rd is adjusted to contain the number of bits in
it. It always loads a multiple of eight bitsinge the program counter points to a byte in
memory, butrd does not necessarily contain a multiple of eight valid bitsg. 6 presents
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L_decode:
1 {Transfer bytes from program ted
such that it has at leadt,ax bits,
and increaseb_rd accordingly. }
2 crd =rd > (w—Kk);
3 goto *adr_[crd];
L_i : /* opcodes of length i (type 2) */
4 crd = rd > (w—i);
5 goto *adr_inst[crd - bas€C'?); + disp(C'?);];
Lp_prefix: /* sub-decoder (type 3) */
6 crd = rd >> (w-—|mam—-kmamﬁ
7 goto xadr_prefix[crd-v(prefiy2prefix] ;
Imne/* C code for mne (type 1) */
8 {If mnehas parameters, transfer themg¢
/* eliminate opcode and parameters */
9 rd <<= (lopcode"'lparm);
10 nb_rd -= (Iopcode+|parm);
11 { C code to emulatenne}
12 goto L_decode;

Fig. 5. General C codef opcode decoders.

#define BYTE(i) (unsigned int)prgm[pc+i]
rd |= (BYTE(0) << 24 | BYTE(1) << 16
| BYTE(2) << 8 | BYTE(3)) >> nb_rd;
pc += (32 - nb_rd) >> 3;
nb_rd += (32 - nb_rd) & ~7;

Fig. 6. A simple technique for line 1 &fig. 5.

a simple ad inefficient portable implementation for line 1, for= 32. Section 6presents
better portable techniques.

Line 2 is the root of a decoder where the first look-up is done; line 3 jumps to a type 2
or 3 node, or to the emulation of a virtual instructien— k; is a constant. At line 5, the
termbas&C'?); + disp(C'?); is a mnstantbas&C'?); is theith value ofbasé’ /2%~ but
wherebasé’ is definedusing only the code€'?, that is all codes treated by type 2 nodes.
Using this aibset ofC might very well decrease the length of vectatr_inst. To be
more precise, all addressefsvirtual instructions iredr _ are not duplicated iadr_inst.

They also do not appear in any vectass_prefixfor type 3 nodes. The vectdisp(C'?) is
the mrresponding vector dfas€C'?). Line 5 recessarily jumps to a virtual instruction. In
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line 6, the termw — I prefix— Kprefix IS @ @nstant| prefix being the length of the prefix abgrerix
the number of bits decoded by this node. So the shifiag>> (w — lyrefix— Kprefix) leaves
in crd not only thekprerix bits to decode but also the previdys:ix bits. Line 7 applies the
proper adjustment using the tem(prefix)zkpfefiX, which isthe extra value left ird before
this node. This avoids shifting some bits outwaf until the end of decoding.

At line 8, decoding is complete and this letemulation of the virtual instructionne
If mnehas some parameters, they are af#dihere. This mause up dlbits in rd or
just part of them; it may also access memory. In most cases, bits should transit théough
What lines 9 and 10 say, which is done differently depending on memory access forms (see
Section §, is thatrd should contain the following bits anab_rd should be maintained
accordingly.

Finally, line 12 returns to # beghning of the decoding cycle. Again, this depends on
the form of memory access as presentedétction 6 It could return to a point in the
block of line 1 where it loads a specific nler of bytes according to the number of bits
consumed bynne

6. Prefetching of code

One inmportant part of the decoder C code was left unspecified, namely line 1, which
loads bytes fromn memoy into rd. Fig. 6 presents one possible simple implementation for
line 1, wherew = 32, but it was quickly discovered to be very inefficient. We investigated
several other portable ways, thrdfendhich are reported in this section.

Getting opcodes and operands from memory indocan be time consuming since
multiple byte loads and bit manipulation operations are possibly needed. We have
explored three different techniques to accessmory. The first one, form-a, is simple, but
shows major slowdowns on materchmarks. The other two, form-b and form-c, show
competitive speed; form-c being often faster than form-b but using more space for the
interpreter. Our algorithm to generate decoders provides the option of using one of these
three forms. Benchmarks Bection 7show thei relative merits.

The different prefetching methods are not used to mitigate the lack of caches or
reduce the number of bytes read from memory. They are used to: reduce the number of
instructions, in particularanditional branch instructions, for deciding how many bytes
from memory need to be read to decode the next opcode; or reduce the number of merging
operations, which requires executing several instructions, dith

For al forms, enough bits are ird to go through the decoding tree, that is decode any
opcode through the multiple level decoder, without accessing memory. This can simply be
done by having at leakt,ax, the length of the longest opcodes, valid bits-ih

6.1. Simple form (form-a)

This version loads, from memory ird, as many bytes as possible without shifting out,
to the left, valid bits from it. It uses the number of valid bitszia to load the minimum
number of bytes necessary to maintain between 7 andw valid bits in rd. Thiscan be
done using a case analysis based on the valde_afd, reading from memory the required
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bytes, shifting them to the left, and merging thenrto The number of bytes to read is
| (w —nb_rd)/8] and the number of bits to shift to the left(® — nb_rd) mod 8.

The advantage, compared with the coderd. 6, is a redeed number of memory
accesses, bitwise ‘or’ operations, and shiftings.

The disadvantage is several companis to branch to the code for loading the
appropriate number of bytes; and there are more mergings than form-c (see below) since
more cases of one byte merging occurs.

6.2. Several-roots form (form-b)

In this form, as in the previous form-a, there are between 7 andw bits in rd at the
beginning of the decoding tree. But instead of one entry point with complex verification
of the number of bytes to load, there are several entry pojnis the rootof the decoder
each one loading eitheror x + 1 bytes. The implementation of these two cases is faster
than the general selection of form-a since a single simple comparison is enough.

This form is possible, since each virtualtingtion knows the number of bits extracted
from rd (at lines 9 and 10), so that it almost knows the number of bytes to loadl after
its emulation. Indeed, suppose that a virtual instruction lses w — 7 hits, induding
its opcode. At the entry of its implementation there are betweemdw — 7 bits in rd,
therefore there are, after its emulation, between b andw — b — 7 bits remaining incd.

So, there are between (A)b — 1)/8] and (B) 1+ [(b— 1)/8] bytes tdoad inrd. If bis a
constant, that is the instruction has a fixeddth, which is a common case in practice, it is
possible to jump to the proper ragtwithout any test or computation.hfis not a constant,

the virtual instruction implementation has to do some computation and test the number of
bits left inrd anyway. This value is used to branch to the properrgaif the decoder. In

the case where > w — 7, the vrtual instruction itself has to load bytes from memory, thus
also knows, after its emulation, the exact number of bytes to load. Note that no dynamic
testis done to verify between cases (A) and (B)bifs a constat: it is hardcoded in the
implementation of the interpreter. Otherwise, that is for a variable length instruction, some
run-time tests should be done to branch to the propenyoot the decoder.

In some way, the proper number of bytes to load falls back to each virtual instruction
which simply branbes to one of the roots that does one integer relational test between a
constant anab_rd.

This is the advantage of that method compared to form-a: there is no need to compute
the value| (w — nb_rd)/8] to know the number of bytes to load, and then to branch to
the proper case which needs several compasgswhen the instruction is of fixed length, a
simple single comparison is enough for form-b. But compared to form-c (see below) it still
suffersfrom many small mergings of one byte.

The disadvantage of this method is a slightly bigger decoder due to multiple decoder
roots.

6.3. Conditional form (form-c)

In this form, memory is accessed at the root, if and onlybif rd is less than,,y, the
length of the longest opcodes. This value ensures that the tree decoder itself does not have
to access memory to decode any opcodeablfrd is less tharla, as manybytes from
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memory as possible are mergedr®. This means that access to memory is delayed as
much as possible.

For example, ifmax = 14,w = 32, andnb_rd = 6, three bytes are loaded and merged
tord; if nb_rd = 15 no bytes would be mergeditd.

The main advantage of this method is a reduced number of merging operatiohs to
As a matter 6fact, experiments show that this is in most cases the fastest approach.

The disadvantage is a larger interpreter, since if the virtual instruction uses more than
Imax bits, for its operands, it is necessary to verify if there are enough bitg to access
them. This case occurs less freqtigim form-b for which there arev — 7 bits in rd after
decoding the opcode (assumingx < w — 7).

7. Experimental results

In order to evaluate our approach, we applied it to the Java Virtual Machine (JVM) on
ten benchmarksl] and the atire JDK 1.0.2 library; to the&scheme language on seven
benchmarks and the“RS library; and to six ynthetic benchmarks to demonstrate the
worstcase scenarios.

For all benchmarks two processors are used: a 600 NPdatium 11l and a 200 MHz
Sparc Ultra-1 with respectively 32 KB and 1 MB level 1 cache. All C programs were
compiled usingzcc version 2.8.For SunOS and version 2.91.66 for Linux with the same
optimizing parameter, namehn3.

7.1. Java benchmarks

We use he Java Virtual Machine to demonstrate our approach on a widely available
bytecode using Hariss&%]. Most virtual instructions’ inplementations are unchanged
but branching instructions are modified to branch on non-byte boundaries. Harissa uses a C
switch statement to decode bytecode instructions. All cases of this switch are transformed
into C macro-instructions and are used by the tool to automatically generate the interpreter
of the compressed code that is the implementation of macro-instructions and instructions
that use new formats. The switch is removed and replaced by an opcodes decoder
automatically generated from our tool.

The training set is the filelasses.zip, i.e. the set blibraries from JDK 1.0.2,
containing over 400 class files. The total bytecode size is 270932 bytes. Note that the
benchmarks (see below) were not used as a training set. This may represent an embedded
design where the standard libraries andutiteial machine are placed in ROM but where
executed programs are downloaded in RAM. In this experiment, the benchmarks would
take the role®f downloaded programs.

After training, the resulting shortest apie has three bits and the longest opcodes
have tweve hts. Forty of the existing instructions were duplicated but with shorter
paameter fields, resulting in a JVM machine of 241 instructions. This extension was
done automatically by our tool to generate virtual instruction sets from samples of
programs 17]. The sole choices of macro-instructions and parameter lengths were done
to better corpress the library classes and not for speed.
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Table 3

Absolute execution time, in seconds, for the original (i.e.
non-compressed) Java benchmarks with modified Harissa
JVM on Pentium and SPARC; and the &e of the original

bytecodes
Benchmark Absolute time Code size
Pentium  SPARC in bytes

NeuralNet 27.8 46.64 7467
FPemulation 3.82 5.29 3724
IDEAencryption 5.40 6.46 1800
Assignment 1.49 2.42 1634
LUdecomposition 3.29 4.60 1602
StringSort 7.68 10.35 1541
Huffman 2.50 3.98 1395
BitfieldOps 5.11 6.21 833
NumericSort 2.75 3.99 773
Fourier 1.83 2.24 640

D JVM corrpression D Pertium Ckr =7 . Pertium Ckr =10 . SPARCCkr =7 . SPARCCKr =10

157

1.0+

0.5

s
\\%

Fig. 7. Relative speed and compressfactors (i.e. compressed code size/original code size) of Java benchmarks
with modified Harissa JVM.

It took around twenty minutes of CPU time (on a 600 MPentium Ill) to create the
new instruction set (i.e. macro-instructions, new formats, and opcodes). It took less than
ten seconds to generate the C code of the new JVM.

For thelibraries, that isclasses.zip, a 0609 compression factor (i.e. compressed
code size/original code size) is obtained.

Fig. 7 presents the timing results and the compression factors of bytecodes for the
BYTEmark Java bachmarks []. The execution times and sizes of the non-compressed
bytecodes are presentedliable 3 These are mderate size benchmarks suited to evaluate
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the eed of JVM implementations. The compression factors take into account the
compression of opcodes, the compact operands, and the use of macro-instructions. They do
not take into account the decoder sizes or the increase or decrease in the interpreter size. As
we discussed in the introduction, this is to separate the space taken by the virtual machine
and the space taken by the virtual programs. The overall compression should take into
account all programs loaded into the systems, the libraries needed to run them, and the size
of the interpreter, including the new decoders. Obviously, this depends on the application
used. If the application’s overall size is 100 KB for the original bytecode, including the
libraries, we may expect a saving of around 40%, that is 40 KB. The increased size of the
decoder may be largely offset by this saving. Below, we give the size of the decoders used
to demde compressed programs compared with the uncompressed decoder.

The speed is relative to the execution of the uncompressed original bytecode on the
original Harissa JVM. Note that all these programs execute some part of the JDK libraries
classes.zip. Sight speedups are observed: they are mainly due to the inlined macro-
instructions which inirease speed of execution.

We use memory access form-c with two decoders having the following structures: (1)
kr = 7, five nodes of type 2, namelys_12, and three nodes of type 3, all directly below
the root; the sum of table sizes®’ + 5 x 2* + 3 x 2°) x 4 = 1216 bytes; (2k = 10,
two nodes of type 2, nameli10-11, ahd one node of type 3; the sum of table sizes is
(210 4 2 x 2% + 22) x 4 = 4240 bytes. Assuming that the original bytecode decoder
could use a simple flat look-ujable of 256 entries of four bytes each, its size would be
1024 bytes. Therefore, fd¢ = 7 the sizeof the tables for the decoder increases by 192
bytes; fork, = 10 it increases by 3216 bytes. If the space of the virtual machine is a
strong concern, thig = 7 decoder adds a very small amount of space to the overall virtual
machine; whereas, if the virtual machine isret let's say in ROM, for which sufficient
space would still be available, it would be better to useldhe= 10 decoder to increase
speed.

The SPARC processor shows the best average slowdown of 9.3%kfoe 10.

One advantge of the SPARC is a largernumber of registers available compared to
the Pentium. The overall speed is sensitive to register availability, since the interpreter
frequently accesses the variabtes pc, andnb_rd. These should be kept in registers to
have good performance. TiRentium assembly code reveals that not enough registers are
avdlable to do that.

The worst speed results are the Fourier and Bitfieldops benchmarks. This is due to the
frequent execution of instructions having long opcodes and small granularities (i.e. the
amount of processing done by the instructions). Some of them are floating-point virtual
instructionsnot statically frequentirlasses.zip. They also do not access object fields
as frequently as the other benchmarks. Sincegétefield andputfield instructions
have a moderate granularity, they increase execution time compared to decoding. On the
other hand, Assignment, StringSort, NeuralNet, NumericSort, and LUdecompaosition show
a small slowdown.

The benchmarks Assignment, StringSort, and NeuralNet have a large number of virtual
method calls as well as field accesses. As mentioned, field accesses hide decoding
overhead, and th is also true for method invocation, be it static or virtual. They show
little slowdown for theSPARC with agood performance for theentium.
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Table 4

Original (not compressed) code size ®heme programs
and their absolute execution time in seconds,Pemtium
andSPARC

Program  Code size in bytes Pentium  SPARC

libR4 32040 N/A N/A

conform 28599 11.70 32.84
earley 26271 1.70 414
gsort 5827 1.83 5.54
destruct 3371 0.79 2.16
mm 2550 3.70 9.26
tak 582 1.55 4.35
fib 169 1.76 4.74

Half of the benchmarks have a 40% reduction in size with a negligible slowdown
(=3%).

The work of Clausen et al5[ presentstie compression of JVM bytecodes compared
with gzip. Itis gplied separately on each method. Tag compression factors vary from
0.66 to 0.91. Our technique gives better compression factors.

7.2. TheScheme language

Our gproach has also been applied to eheme language 17]. From a general
stack machine calleachina our tools create a new set of instructions cafiathemina.
Machina has only 41 instructions.

This experiment is quite different compared to the JVM as it starts from a very simple
and general virtual machine not tailored facheme. Due to the non-optimized bytecode
encoding, the compression factors obtained are better than for the JVM. Essentially, more
useful macro-instructions were discovered and they were longer.

The training set (i.e. the samples of programs) was a subset of the R4RS Scheme library
(cdled libR4 in Fig. 9) and seven bashmarks. A total of 112 instructions were generated
by our tools, including the 41 original ones.

Fig. 9 compares the compression factors of our technique giip applied to the
original bytecode. The original code sizes are presentethivie 4 We only used it to
compare compression performances sgie encoding cannot be executed without prior
decompressiorgzip can have better performances for two major reasons: it compresses
disregarding basic block boundaries, and it disallows non-sequential decompression.

In several cases our approach is close or better gzgmand we can still efficiently
execute our compressed code.

Fig. 8 presents, relatively to the uncompressed origMathina programs, execution
time of the compresseficheme programs. The absolute times for the original (i.e. non-
compressed) programs are presentekhinle 4 For several benchmarks there are speedups
since nacro-instructions increase speed and many of the new instructions have short
opcodes and operands.
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conform mm gsort fib earley tak destruct

conform mm gsort fib earley tak destruct

Fig. 8. Relative execution time of compresse§cheme programs, using form-c orPentium (top) and
SPARC (bottom) for several decoders.

[Jschemina M ogzip
1.0

0.5

1ibR4 conform earley gsort destruct mm tak

Fig. 9. Compression factors (i.e. compressed code size/original code siZ&)Heme programs compared to
gzip.
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Table 5
Absolute time, in seconds, to execute uncom-
pressed programs, based on Zipf-20

Pentium SPARC

M1 Mo M3 M1 Mo M3
0.38 045 081 213 256 5.08

Mg Mg Mg Mg Mg Mg
040 049 085 232 283 3.76

7.3. Synthetic benchmarks

The Java and Scheme benchmarks demonstrate the applicability of the approach in a
redistic setting. But it raises the question of hidden overhead by the emulation of the virtual
instructions. Also, inlined macro-instructions increase speed. Therefore, we also present
synthetic benchmark timings, where the frequg of instructions, their granularity, and
theiroperand lengths are precisely defined; there are no macro-instructions used for these.
In other words, the synthetic benchmarks more clearly show the overhead of Huffman
decoding and non-byte alignment.

For the synthetic benchmarks, we use six virtual machines of different granularities
allowing better measurement of decoding overhead. They all have twenty instructions,
without parameter for the first three machines, but for the last three machines, six
instructions have a paraneetof length 2, 2, 3, 4, 5 and 7 bits. The opcodes are encoded
based on Zipf-20 probabilities.

In the first machine, all twenty virtual instructions add one to an integer cogntaithe
second machine each instruction does two additional integer operations; in the third one,
each instruction does two additional memory accesses to simulate a stack. Machines 4-6
have parameters and do the same work as imasH—3 respectively, but six instructions
have parameters and add them to their own coumi&Ve use the same @gram for the six
machines: it is a sequence of the twenty instructions, from instruction 1 to 20, performing
4 x 10 iterations; that is the last instruction does a jump to the first instruction which
stops the execution when countarreaches this value. The opcodes are compressed based
onthe Zipf-20 probabilities which have an average length of 3.6 bits. Three decoders are
applied on all six machines executed on two host processors.

An interpreter was used to decode the ampressed programs. These programs
are bytecoded: one byte for each opcode and iwies for an operand, if applicable.

The decoding is a computed branch, indexed by the opcode, to the virtual instruction
implementation. Each implementation #saits operands, emulates the operation and
jumps back to the beginmg of the decoding cycle.

Fig. 10 presents thetiming results for compressed programs, relative to the
uncompressed ones. The absolute times are presenfeabia 5 The simpe memory
access form-a is disappointing but form-b and form-c are good. The two forms are close in
performance even though form-c is often the better. Since form-b generates more compact
interpreters there is an iofmed trade-off to make.
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Fig. 10. Relative time to execute compressed programs, based on opcodes from Zipf-20 probabilities, for six
virtual machines, three decoders, three memory access forms (form-a, form-b and forrRemfiam (top) and
SPARC (bottom).

As expected, thebest results are obtained forachine 3, since the instruction
granularities hide some overhead of decoding. In particulaPesrtium andSPARC there
is an acceleration for the pararedess instructions. This is due to the reduction in memory
accesses and extraction of operands. Witk= 6, decoding is done in one step, and most
often the next opcode is ird, which is, in hese benchmarks, a processor register.
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From this eperiment we can conclude that even with virtual instructions doing almost
no work, as in machine 1, and with a small decoder, the decoding is around a 50% overhead
(as in forme used vith ak, = 4 decoder). This is an extreme artificial setting aimed to
demonstrate the worst case performance. On the other hand, if we have instructions with
no parameter and enough granularity, a siogecan be observed. This is probably due to
a reduced number of accesses to memorydas most of the time loaded with more than
oneinstruction; this is not the case with the original bytecode. But we have not explicitly
verified this hypothesis.

7.4. Summary of the experiments

In conclusion, for JVM, the average compression factor is around 0.6 for 400 classes of
the JDK 10.2 and the ten benchmarks. For half of the benchmarks, the slowdown is hardly
naticeable. This shows the practicality of the approach. The synthetic benchmarks show
more explicitly the overhead of decoding our compressed bytecode, demonstrating that
even a speedup can be achieved in some cases without macro-instructiolSlEmee
results show that starting from a very geremachine, our compression creates efficient
and compact instructions. They also show that we can come cloggagacompression
performance and still efficiently decode the compressed instructions.

8. Related work

The compression of bytecodes for virtual machines was addressed by Wilner for the
SDL language on Burroughs B170R9. It uses Huffman codes but decoding was done
bit by bit by the microcode. This is too slow to be practical at the software level.

Pdterson and Henessy manually designed a compact native instruction set by studying
sample pograms generated from C codS].

Deading of Huffman encoded instructions has also been studied at the hardware level
by several researcher$g19,2]. They usually decompress between the memory and the
instruction cache. They do not use fast decodimeghods applicable at the software level.

Ernst et al. §] compress native code by generating a tailored VM, using macro-
instructions and fixing parameters, from the intermediate form emitted by a C compiler.
It is similar to Proebsting’s work34]. Their technique is competitive withzip on native
code. But it is not reported if the compression obtained is due to the use of the VM or the
compression of the virtual program. Moreover, no timing of the execution of compressed
programs is reported.

Cooper and Mclintosh§] reduce program size by replacing particular repetitive
sgjuences of instructions with a branch. The code saving is on average 5%. Cooper et al.
[7] searches, using a genetic algorithm technique, a combination of compilation techniques
to reduce code size. These works differ from ours since they are done on native code and
no Huffman encoding and argument compacting are applied.

Pugh [25] appies several techniques tompress Java class files. This work differs from
ours since decompression is performed before execution.

The work of Rayside et al2p] also apflies to class files, buhese techjues do not
apply to the bytecode itself.
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Hoogerbrugge et al1p] uses asimilar strategy of the Aumb and MIPS16 processors
[28,15] to compress some parts of the program. But instead of applying compression
on the binary exedable, they automatically generate a tailored virtual machine for the
intermediate form of the C program. When the intermediate form is translated into a
virtual program, frequent sgiences of virtual instruaihs are replaced by one opcode.
This particular technique gives a 30% redustio size conpared to the virtual program.

Our work is @mplementary by further reducing the size of the virtual programs using
compressed virtual instructions.

Lucco [20] appies conpression to x86 native code using a dictionary technique to keep
track of repeated short sequences of instams. At least one decompression is performed
before the escution of a basic block, requiring aufber space to keep the decompressed
copy. Our work differs as we apply it to the cert of virtual machines ahdiredly decode
compressed instructions.

Clausen et al.q] compresses bytecode by replacing repetitive sequences of JVM
instructiongy macro-instructions. They obtain an average compression factor of 0.85 with
a slowdow from 19% to 27%.

The work of Evans and Frasel(] has an identical goal as ours: direct execution
of compressed bytecode. The compressirhhique is based on the modifications of
a granmar of the bytecode. Their technique avoidsiablelength instructions contrary
to our technique. Good compression factors on large programs are obtained although no
execution times are reported. This technique could be combined with ours to cover a larger
range of program sizes; but, we believe, to the detriment of execution speed.

Debray and Evan$3] usecanonical Huffman code on binary executables, but using the
slow deoding technique as iSection 3.1They avoid compession on frequently executed
parts of the code to obtain reasonable execution speed.

In general, our approach differs from these previous approaches as we interpret com-
pressed virtual instructions directly without an explicit partial or whole decompression,
awiding using any additional RAM, and moreover it is done over variable bit-length en-
coding, specifically Huffmanreoding of operational codes.

9. Summary

This work has shown that decoding canonical Huffman encoded opcodes, at the
sdtware level, in the context of virtual instructions, can be done efficiently. The speed of
decoding increases with the size of the decolegereral structure of compact decoders
has been shown to be effective, permitting a gradual trade-off between speed of decoding
and space constraints.

Huffman decoding is not the only difficulty for quickly interpreting compressed virtual
instructions, memory access for variable lengtffiblds is also importat. Two prefetching
techniques were shown to achieve good results.

The efficiency of the decoders has been demonstrated on simple synthetic benchmarks,
on theScheme language, and on Java benchmarks showing an average slowdown ranging
from 2% to 27% depending on the processor and the size of the decoders. Half of the Java
benchmarks have a 40% reduction in size with a negligible slowde8fx).
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