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Run-time monitoring of JavaScript applications is typically
achieved either by instrumenting a browser’s virtual machine, usually
degrading performance to the level of a simple interpreter, or through
complex ad hoc source-to-source transformations. This paper reports on
an experiment in layering a portable JS VM on the host VM to expose
implementation-level operations that can then be redefined at run-time
to monitor an application execution. Our prototype, Photon, exposes
object operations and function calls through a meta-object protocol. In
order to limit the performance overhead, a dynamic translation of the
client program selectively modifies source elements and run-time feed-
back optimizes monitoring operations. Photon introduces a 4.7× to 191×
slowdown when executing benchmarks on popular web browsers. Com-
pared to the Firefox interpreter, it is between 5.5× slower and 7× faster,
showing the layering approach is competitive with the instrumentation of
a browser VM while being faster and simpler than other source-to-source
transformations.

Keywords: JavaScript, Virtual Machine, Runtime Monitoring, Perfor-
mance Evaluation, Optimization, Metaobject Protocol

1 Introduction

JavaScript (JS), the de facto language of the web, has recently gained much
popularity among researchers and practitioners alike. In particular, due to the
highly dynamic nature of the language, there is a growing interest in observing
the behavior of JS programs. For instance, run-time monitoring is being used
for widely different purposes, such as gathering empirical data regarding the
dynamic behavior of web applications [10], automatically extracting benchmarks
from web applications [11], and enforcing access permission contracts [6].

Common profiling tasks in JS, such as intercepting all object operations or
function calls, are difficult to achieve in a portable and efficient manner. A pop-
ular approach consists of modifying a production virtual machine (VM). While
� This work was done at Université de Montréal.



this approach guarantees a high level of compliance with the source language, it
suffers from some important drawbacks. Most modern JS implementations are
production-quality VMs that are optimized for performance and thus difficult to
modify. Generally, this approach also binds the profiling system to a single VM,
and therefore greatly limits the portability of the approach. Moreover, modifica-
tions to the VM codebase must evolve as the VM is being developed upstream,
which can happen at a rapid pace. As a result, many attempts to modify a JS
VM are punctual efforts that are abandoned shortly thereafter [3,8,10].

The most popular alternative approach for instrumenting JS programs con-
sists of implementing an ad hoc source-to-source translator and runtime library
tailored to the problem at hand. While this approach is easier to maintain
and more portable than instrumenting a VM, implementing a correct source-
to-source transformation is deceptively difficult in practice, even for seemingly
simple tasks. For instance, instrumenting all object creations also requires in-
strumenting all function calls because any function call could potentially be a
call to Object.create through an alias. Other dynamic constructs in JS, such as
eval, are notoriously difficult to instrument while guaranteeing that the observed
behavior of the program will remain unaffected. Also, JS programs can easily
redefine core operations from Object and Array. Such modifications are difficult
to handle. A profiler that is unaware of such redefinitions could behave incor-
rectly, or worse, cause a change in the observed behavior of the profiled program.
Finally, the profiler code itself must maintain various invariants. For example,
instrumentations that rely on extending existing objects with new properties
must take proper care not to leak information that is visible to user code by
introspection (e.g., by iterating over all properties of an object1).

Both VM instrumentation as well as source-to-source transformations can
have unexpected performance costs. VM instrumentation often settles for mod-
ifying a simple non-optimizing interpreter to avoid the additional complexity
of instrumenting a commercial Just-In-Time (JIT) compiler. The performance
hit incurred by disabling the JIT compiler in a modern JS implementation is
significant, often an order of magnitude or more. Second, while source-to-source
transformations can benefit from the full range of optimizations performed by
the JIT, a naive transformation often results in a similar slowdown.

In this paper, we present an alternative technique for run-time monitoring of
JS applications based on virtual machine layering. Virtual machine layering con-
sists of exposing implementation-level operations performed by the VM through
various abstraction layers. Specifically, our approach uses a flexible object model
as a basis to build the abstraction layers. A JS application is then transformed
to make use of these abstractions. Because this transformation is performed
during the execution, the resulting framework can be viewed as a metacircular
VM written on top of a host VM for the source language. This approach has
three main advantages. First, exposing implementation-level operations provides

1 Marking properties as non-iterable is not sufficient in general, since
Object.getOwnPropertyNames will return all property names, irrespective of their
iterable nature.



a good compromise between the portability offered by source-to-source trans-
lations and the expressiveness of VM modifications. For instance, profilers can
easily extend or redefine the implementation-level operations to accomplish their
specific tasks. Second, by exposing implementation-level operations in a separate
layer, our approach can prevent interference between VM code and user code.
This is achieved by ensuring that user code only manipulates objects through
proxies2, which provide a form of sandboxing over the native objects provided by
the host VM. Finally, the metacircular VM can leverage fast operations provided
by the underlying host VM to reduce the overhead of the transformation. This is
achieved by (i) letting the host VM execute operations for which no abstraction
is necessary, and (ii) providing abstractions that use or support the operations
that are efficiently implemented by the host VM. Reusing complex primitive op-
erations from the host VM also greatly reduces the development effort required
to provide a fully compliant VM implementation.

Virtual machine layering is not new and has been previously studied as an
implementation technique for metaobject protocols [7]. It can add to JS many
of the functions of an intercession API such as the Java Virtual Machine Tools
Interface (JVMTI) by reifying implicit operations of the language. In contrast
to JVMTI, it does not require the modification of the internals of a VM, only a
single intercession point in the browser to maintain the invariants of the layered
VM by translating dynamically loaded code before it is executed by the host
VM. However, it cannot give access to implementation-specific information such
as garbage collection events or exact memory usage. A standard API would
supersede it, but until consensus is reached by VM implementors, VM layering
can help build on a common instrumentation infrastructure and explore the
API design space. One of the authors wrote a small patch to add an intercession
point to the Debugger API in Firefox3. We believe it should be straightforward
to implement and require little maintenance to support on all major browsers.

Photon4, our prototype implementation of this technique, uses a single prim-
itive operation, message-sending, to reify implementation-level operations such
as object operations and function calls. The use of the message-sending primi-
tive provides a simple and dynamic mechanism to instrument and even redefine
the behavior of a reified operation. For instance, a profiler could intercept all
calls by providing a wrapper function for Photon’s call primitive operation. In
order to offset the cost of the message-sending mechanism, Photon implements
a send cache optimization. This optimization allows the behavior of a message
send (e.g., a property access) to be specialized at a given program point. This
caching optimization is crucial to obtain a good performance in practice, making
Photon on average 19% faster than a commercial interpreter while providing a
much higher degree of flexibility and dynamism.

This paper makes two main contributions: (i) the design of a VM that reifies
object operations and function calls around a single message-sending primitive

2 We refer to the implementation concept in general, not the upcoming JS Proxies.
3 https://bugzilla.mozilla.org/show_bug.cgi?id=884602
4 https://github.com/elavoie/photon-js/tree/ecoop2014
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so that their behavior can be redefined dynamically, (ii) an object representation
exploiting the underlying host VM’s inline caches and dynamic object model for
performance. Both are shown to provide a significant performance increase over
existing approaches and are an important step towards portable and efficient
instrumentation frameworks for JavaScript.

We present in turn, an overview of the components of the system, the ob-
ject representation, the message-sending semantics, a compilation example, a
performance evaluation, and related work.

2 Overview

In a conventional JS setting, an application runs over a high-performance host
VM. In the case of a metacircular VM, an additional VM layer is inserted be-
tween the application and the host VM. This layer can be a full or a differential
implementation. In a full implementation, the metacircular VM provides all func-
tionalities of the source language. In a differential setting, however, the metacir-
cular VM only implements parts of the required functionality, and delegates the
remaining operations to the underlying host VM. Our approach follows a differ-
ential strategy. Object operations are handled by one of the layers introduced
by Photon while primitive operations are handled by the host VM.

This section presents Photon’s design goals and components.

2.1 Design goals

Our design aims to achieve the following properties:

– Isolation: The application is isolated to avoid any interference with instru-
mentation code, while still allowing an instrumentation to fully inspect and
modify the application state.

– Abstraction: Low-level details, mostly related to performance optimiza-
tions, are encapsulated to simplify the definition of instrumentations.

– Performance: Native features are reused when possible (e.g. control-flow
operations). The performance of some host features (e.g., fast global function
calls) is leveraged in optimizations that reduce the overhead of abstractions.



In this paper, we focus on the performance aspect to stress the feasibility of
virtual machine layering on modern JS VMs.

2.2 Overview of the Components

Figure 1 shows a structural view of the components of Photon.
Source-to-Source Compiler. The source-to-source compiler translates the orig-

inal JS code to use the runtime environment provided by Photon. Non-reified
elements, such as control-flow operations as well as primitive values and opera-
tions are preserved. Object operations and function calls are translated to make
use of the message sending layer. Literal object creations are translated to use
the object representation. The source-to-source compiler is itself written in JS
and is therefore available at run-time. By staging it in front of every call to eval,
it effectively provides a JIT compiler to Photon.

Message Sending. Photon uses a message sending primitive to reify operations
internal to the implementation, such as property accesses on objects and function
calls. These reified operations can then easily be overridden and redefined when
required, for example to profile the application or to specialize the behavior
of an operation. Photon itself makes use of this extra level of indirection for
performance by providing a caching mechanism at each site that performs a
message send, a form of memoization.

Object Representation. In order to isolate the application from the instrumen-
tation and the host VM, Photon provides a virtualized representation of objects
(including functions). Each JS object in the original application is represented in
Photon by two distinct objects: a property container and a proxy5. The property
container corresponds to the original object, and acts as storage for all properties
that are added to an object. For performance reasons, the property container
object is a native JS object provided by the host VM. This allows Photon to
leverage its efficient property access mechanism.

The native property container can only be accessed through Photon, and
never directly from the application. All object operations go through the proxy
object, which is the object that is manipulated directly by the transformed appli-
cation code. Object representation operations can be specialized in certain classes
of objects for performance, such as indexed property accesses on arrays. The use
of proxy objects also simplifies the task of implementing instrumentations be-
cause it abstracts implementation details that are required for performance. It
also allows object-specific instrumentation information to be stored on a proxy
without risk of interference with the application properties.

Instrumentation. An instrumentation can redefine the behavior of object op-
erations and function calls by replacing the corresponding method on a root
object with an instrumented version using the object representation operations.
The ability to completely replace a method provides maximum flexibility to in-
strumentation writers as opposed to being limited to a specific event before and
5 Implemented using a regular object. It would be interesting future work to investigate

how the upcoming JS proxies perform.
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after an operation. However, most instrumentations will choose to simply del-
egate to the original implementation of an operation and act as wrappers. An
instrumentation is executed with the same privileges as the VM, and can there-
fore directly access the execution environment of the VM. It can also use native
objects as data structures.

The next sections expand on the object representation and message sending.

3 Object Representation

Conceptually, all JS objects are associative arrays where the keys represent the
properties of an object. As with many dynamic languages, properties can be
dynamically added, redefined or removed from an object. Each object also has a
reference to a prototype object from which it inherits properties. The sequence
of prototype objects until the root of the object hierarchy forms the prototype
chain of an object. Functions are also objects, and are first-class citizens in the
language. Methods on objects are simply properties with functions as values.
JS also treats all global variables and function declarations as properties of a
singleton global object.

Photon virtualizes the host VM objects exposed to the application in order
to provide isolation between the application and the instrumentations, and to
reify the object operations supported by JS. While this design provides a high
level of flexibility, it also introduces a source of overhead. Proper care must be
taken to limit the performance impact of the object representation.

Figure 2 illustrates the object representation used in Photon, with
Object.prototype as the root of all objects. Photon structures the object rep-
resentation as proxies to native objects [5]. Each original JS object is therefore
represented by two distinct objects in the transformed application. In this rep-
resentation, the structure of the native (i.e., proxied) object is the same as with
the original representation. Using native objects to store properties is motivated
by performance. Modern JS VMs aggressively optimize property accesses and
method calls on objects, as these operations are key to good performance in



Operation Interface Example
Property read get(id) o.get("p")
Property write set(id, val) o.set("p",42)
Property delete del(id) o.del("p")
Prototype read getPrototype() o.getPrototype()
Object creation create() parent.create()
Call call(rcv, ..args) fun.call(global)

Table 1. Object representation operation interfaces

practice. Therefore, preserving the internal structure of the represented objects
enables the optimizations performed by the host VM, such as lookup caching.

The application root objects are virtualized for isolation. For example, the
application Object.prototype is a child of Photon’s Object.prototype. It is re-
ferred to as root.object in Photon’s implementation. Other JS object model
root objects, such as Array.prototype are also reified and have root.object for
prototype.

The proxy object encapsulates the logic implementing the object operations,
as well as the invariants that are required for performance (e.g., invalidating
caches in response to a redefined operation). Table 1 lists the methods that are
provided by proxy objects in order to reify object operations.

Additionally, in order to exploit the fast lookup chain implementations pro-
vided by the host VM, the prototype chain of the proxies mirrors the prototype
chain of the native objects. This organization of the proxy objects enables spe-
cializing and optimizing the operations performed on the object representation
at run-time by strategically defining specialized methods along the proxy pro-
totype chain. For example, property accesses performed on array objects can be
optimized for the case where the property is numerical rather than using a less
efficient, generic mechanism.

However, this strategy does not work well with native types that can be
created using a literal syntax, such as arrays, functions and regular expressions.
In order to preserve the prototype chain invariant, it would be necessary to
change the prototype of these objects after their creation. While technically
possible, doing so would invalidate structural invariants assumed by the host
VM, at the cost of performance. For such objects, the original native prototype
is maintained. When a lookup is needed, it is performed explicitly through the
proxy prototype chain. This is illustrated for arrays in the right part of Figure 2.

Although proxies mirror native objects in their prototype chain, they do
not mirror their properties. In fact, their properties will be fixed for the whole
execution if the object operations are not redefined (e.g., through an instru-
mentation). Proxies can therefore adapt to dynamic circumstances by adding
specialized methods at run-time, which can be used for performance gains. The
next subsections demonstrate how this can be exploited to specialize operations
for a fixed number of arguments.



3.1 Specialization on a Fixed Number of Arguments

Our object representation does not mandate a specific calling convention for
functions. Function calls are reified through a call method implemented by
function proxies. The naive implementation of call uses the equivalent call or
apply method provided by the host VM. However, this generic mechanism is
inefficient. It can be avoided by globally rewriting every function to explicitly
pass the receiver object. This way, a specialized call operation on a proxy object
can simply and efficiently invoke the native function with all arguments passed
explicitly. Therefore, function calls can be specialized for the number of argu-
ments found at a given call site. For example, a call operation specialized for
one argument in addition to its receiver could be implemented as follows:
fn_proxy.call1 = function ($this, arg0) {

return this.proxiedObject($this, arg0);
};

Note that all callable proxies must provide an implementation of call1 (e.g.,
by defining this operation on the FunctionProxy root).

4 Message-Sending Semantics

Source-level instrumentations aim to intercede on common and often opaque
operations performed by the host VM. Our object representation provides a
mechanism that reifies implementation-level object operations. In order to enable
the redefinition of such operations in a flexible, dynamic and efficient way, our
approach uses a single message sending primitive. Translating opaque operations
to our message-sending primitive makes them available for instrumentation, and
provides additional performance benefits.

4.1 Reifying Object Operations

Reifying opaque operations in source-level instrumentations is typically achieved
by transforming the original code so that all such operations go through globally
accessible functions. For example, in the case of the property read var v = o.foo,
the program could be instrumented as follows:

function __get__(o, p) {
<before>
var r = o[p];
<after>
return r;

};
...
var v = __get__(o,"foo");

This strategy exposes the details of the opaque operation, such as the iden-
tity of the object as well as the name of the property being accessed. It allows
an instrumentation to perform some work before, after or even instead of the
original operation. However, it lacks flexibility. For instance, instrumentations



requiring a fine-grained control over which objects need to be monitored would
need to introduce tests in the global function, at a cost in performance. Also,
this rigid design makes it difficult to disable the instrumentation dynamically
without incurring the run-time cost introduced with the instrumentation mecha-
nism. Furthermore, multiple optimizations cannot be combined seamlessly with-
out adapting the intercession mechanism.

To address these limitations, our approach replaces globally accessible func-
tions with methods defined on the objects being monitored. This strategy ex-
ploits the object-oriented nature of the underlying implementation, and enables
a fine-grained monitoring strategy to be implemented easily. For example, an
instrumentation of property reads could be implemented as follows:

o.__get__ = function (p) {
<before 1>
var r = this[p];
<after 1>
return r;

};
Array.prototype.__get__ = function (p) {

<before 2>
var r = this[p];
<after 2>
return r;

};
Object.prototype.__get__ = function (p) {

<before 3>
var r = this[p];
<after 3>
return r;

};
...
var v = o.__get__("foo");

This example illustrates how an instrumentation can be applied selectively
to a set of objects based on their hierarchy. This example performs a different
instrumentation for three distinct classes of objects: a given instance o, all arrays,
and all other objects. While there is an added cost to this technique, it preserves
the ability of the host VM to optimize the calls to __get__ using its regular inline
caching mechanism.

Note that to ensure isolation, this instrumentation strategy is combined with
the object representation presented in Section 3. All operations are therefore
performed on proxies instead of accessing the native object directly:

proxy.set("__get__",
new FunctionProxy(function (p) {

<before 1>
var r = this.get(p);
<after 1>
return r;

}));
...
function send(proxy, msg, ..args) {

return proxy.get(msg).call(obj, ..args);



Object Model Operation Example Equivalent Message Send
Property read o.p send(o,"__get__","p")
Property write o.p=42 send(o,"__set__","p",42)
Property delete delete o.p send(o,"__del__","p")
Object creation with literal {p:42} send({p:42},"__new__")
Object creation with constructor new C() send(C,"__ctor__")
Table 2. Object model operations and examples of their equivalent message sends

}
var v = send(proxy, "__get__", "foo");

The send function in the previous example encapsulates the message sending
logic as implemented by Photon. The semantics of the send operation correspond
to a regular method call: the function proxy corresponding to a given message is
first looked up, possibly using the prototype chain, and is then invoked with the
provided arguments. While this formulation is not strictly necessary to obtain
the desired semantics, our current implementation relies on it for performance
optimizations, as explained in Section 4.3.

The strategy used to support __get__ can be used to support all other object
operations. A summary of the supported operations and their equivalent message
sends is listed in Table 2.

4.2 Reifying Function Calls

JS functions can be called directly (e.g., f()) or indirectly through their call
method. This mechanism can be seen as a form of built-in reification of the
calling protocol. However, there is no causal connection between the state of the
call method and the behavior of function calls: redefining the call method on
Function.prototype does not affect the behavior of call sites. Therefore, call is
not sufficient to expose all function calls for instrumentation purposes.

This causal relationship is established in our approach by providing a call
operation on all function proxies. Similarly to other object operations, all func-
tion calls in the original program are transformed into a send of the call message
to a function proxy. Table 3 lists the transformation strategy for each type of
function call provided by JS. Note that global function calls are translated di-
rectly into method calls on the global object, thereby exposing their semantics
at the compilation stage. In order to implement both method calls and regular
function calls using the same mechanism, a modification of the send operation
ensures that the reified call operation is used for all calls throughout the system:

function send(rcv, msg, ..args) {
var m = rcv.get(msg);
// Use reified "call"
var callFn = m.get("call");
return callFn.call(m, rcv, ..args);

}



Call Type Description Equivalent Message Send
Global Calling a function in the global ob-

ject. Ex: foo()
Sending a message to the global ob-
ject. Ex: send(global,"foo")

Local Calling a function in a local variable.
Ex: fn()

Sending the call message to the
function. Ex: send(fn,"call")

Method Calling an object method.
Ex: obj.foo()

Sending a message to the object.
Ex: send(obj,"foo")

apply or
call

Calling the call or apply function
method. Ex: fn.call()

Sending the call or apply message.
Ex: send(fn,"call")

Table 3. Call types and their equivalent message sends

With these mechanisms in place, all function calls can be instrumented simply
by redefining the root function’s call method.

4.3 Efficient Implementation

In order to reduce the indirection introduced by the transformation process,
Photon uses a caching mechanism for send operations. Send caches use global
function calls both as an optimized calling mechanism as well as operations that
can be redefined dynamically. They provide the same ability as code patching in
assembly. On the state-of-the-art JS VMs, inlining functions becomes possible
when their number of expected arguments matches the number of arguments
supplied. If the global function is redefined at a later time, the call site will be
deoptimized transparently. This is a highly powerful mechanism because much
of the complexity of run-time specialization is performed by the underlying host.
The caches implemented by Photon piggyback on this approach.

For example, sending the message msg to an object obj inside a foo function
can be written as follows:
function foo(obj) {

send(obj, "msg"); // Equivalent to obj.msg();
}

The send function is a global function. It can be replaced with another global
function that is guaranteed to be unique, so that each call site effectively receives
its own version of the send primitive. In addition to the message to be sent,
this global function is also provided with a unique identifier used to access the
corresponding global function name, for later specialization of the call site:
function initialState(rcv, dc, ..args) {

<<<code updating variable "scN" (N=dc[0])>>>
return send(rcv, dc[1], ..args);

}

var sc0 = initialState;
var dc0 = [0, "msg"];

function foo(obj) {
sc0(obj, dc0);



}

Note that the initialState function follows the same calling convention as
the send function. Furthermore, dc0 can be used to store additional information
according to the state of the cache, if needed.

After an initial execution, the cache will dynamically be redefined to hold
an optimized version of the operation. For the example, the default caching
mechanism implemented by Photon will specialize the cache as follows:

var sc0 = function (rcv, dc) {
return rcv.get("msg").call(rcv);

};
var dc0 = [0, "msg"];

function foo(obj) {
sc0(obj, dc0);

}

Apart from the indirection of the global function call, this example is optimal
with regard to the chosen object representation. If the underlying host VM
chooses to inline the global function, the cost of the indirection will be effectively
eliminated in practice.

In addition to the inlining of the message sending operation in terms of the
object operations, as shown previously, Photon also uses the cache to avoid the
cost of message sending altogether for reified operations, by inlining an optimized
version of its behaviour. In this case, the reified operation is assumed to be
defined only once on the root object. Photon tests it by looking for a __memoize__
property on the method (explained in the next subsection).

That limitation is necessary because, when an instrumentation redefines the
reified operation simultaneously on more than one object, Photon’s current in-
variant tracking mechanism cannot detect whether the instrumented method of
the current receiver object would resolve to the one inlined. It is assumed, in this
case, that an instrumentation writer would not define a __memoize__ property
on the instrumented operation in order to prevent the application of that second
optimization.

Memoized Methods Memoization is usually associated with functional pro-
gramming and entails trading space-efficiency for time-efficiency by remembering
past return values of functions with no side-effect. By analogy, we define a mem-
oized method in our approach to be a method that performs the same operation,
albeit possibly more efficiently by exploiting run-time information (e.g., argu-
ment count). This particular functionality is necessary to efficiently implement
the JS object operations in our system because they are reified as methods.

The basic principle behind memoizing methods is to allow a method to in-
spect its arguments and receiver in order to specialize itself for subsequent calls.
The first call is always performed by calling the original function while all sub-
sequent calls will be made to the memoized function. A function call defines its
memoization behavior by defining a __memoize__ method.



There is an unfortunate interaction between memoization and the reification
of the call protocol. A further refinement specifies that memoization can only
occur if the call method of the function has not been redefined. Otherwise, the
identity of the function passed to the call method would not be the same. To
preserve identity while allowing memoization, the behavior of the cache can be
different depending on the state of the Function.prototype’s call method. If
its value is the default one, the identity of the function is not important and
memoization can be performed. Otherwise, memoization will be ignored. This
definition has the advantage that there is no penalty for temporarily redefining
the calling method after the original method has been restored.

Specializing instrumentations Performance-critical instrumentations can use
memoization to provide efficient specialized operations. For example, consider a
simple instrumentation that counts the number of property accesses:
root.object.set("__get__",

new FunctionProxy(
function ($this, prop) {

counter++;
return $this.get(prop);

}));

The redefinition of the __get__ operation prevents the use of the default in-
lining mechanism, and therefore reverts the send cache behavior to the following:
var counter = 0; // Added by the instrumentation

var sc0 = function (rcv, msg, prop) {
return rcv.get("__get__").call(rcv, prop);

};

sc0(o, "__get__", "p");

To limit the incurred performance overhead, this instrumentation could pro-
vide an implementation of __get__ that additionally responds to the __memoize__
message. After the first execution of the property access, the optimized version
of the send cache would become specialized as follows, thereby eliminating much
of the additional overhead from the naive implementation:
var counter = 0; // Added by the instrumentation

var sc0 = function (rcv, msg, prop) {
counter++;
return rcv.get(prop);

};

sc0(o, "__get__", "p");

Cache States and Transitions In order to guarantee the correct behavior of
an application, caches need to be invalidated when their invariants are violated.
This requires tracking the invariants for each cache used in the system. To sim-
plify tracking the invariants, we always perform lookups for method calls (i.e.,
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method calls are always a get followed by a call). This is a reasonable choice if
the object representation can piggyback on the host optimizations.

In addition to its initial state, each cache can be in one of two states, regular
method call, in which the method is first looked up and called, and Memoized
method call, in which a method-specific behavior is executed.

Transitions between states happen on message-sends and object-operation
events. We choose to under-approximate the tracking of invariants and conser-
vatively invalidate more caches than minimally required. As long as the opera-
tions triggering the invalidation of caches are infrequent, the performance impact
should be minimal. We therefore track method values cached in memoized states
by name without consideration for the receiver object. If a method with the same
name is updated on any object, all caches with a given message name will be
invalidated. Also, if the call method on the Function.prototype object or any
method with the __memoize__ name is updated, all caches will be invalidated.
This way, we only need to track caches associated with names. Memory usage is
proportional to the number of active cache sites.

There is no state associated with a redefined call method. In that particular
case, all caches will stay in the initial state and a full message send will be
performed. Figure 3 summarizes those elements in a state diagram. A more
detailed explanation of every event and transition conditions is given in Table 4.

Our current tracking strategy was chosen to evaluate the performance of our
prototype with a minimal implementation effort. However, it is not granular
enough to track instrumentations redefining operations on non-root objects. A
more granular strategy should be used for instrumentations requiring different
operations for different groups of objects.

5 Compilation and Execution Example

We now show how the components of Photon work together using an example.
It illustrates many of the reified operations discussed previously: property reads
and writes as well as function and method calls. Consider the following program:



Cache Events Explanation
Send A message is sent to a receiver object.
Call redefinition The call method on Function.prototype is redefined.
Any memoized redefinition Any __memoize__ method is being redefined.
Bailout A run-time invariant has been violated.
Method redefinition An object with a method with the same name has its

method being updated.

Cache Transition Condition Explanation
Default call Function.prototype call method is the same as the ini-

tial one.
Redefined call Function.prototype call method is different than the

initial one.
No __memoize__ method No method named __memoize__ has been found on the

method to be called.
__memoize__ method A method named __memoize__ has been found on the

method to be called.

Table 4. Cache Events and Transition Conditions

var f = function (n, d) {

for (var i=1; i<=2; i=i+1) {
n = n + d.getTime();

}

return n;
};

f(42, new Date(100));

Note that the getTime method call will be executed twice during execution.
The source-to-source compiler translates each reified operation to a message

send according to Table 2 and Table 3. Each occurrence of a message send has an
associated send cache (scn) initialized to the initialState function, and a data
cache (dcn), containing the cache identifier (n), the message name and compile
time information about arguments. Each literal object created is wrapped in a
proxy to obey the object representation, a function literal is therefore wrapped
with a FunctionProxy. Non-reified operations, such as the scope chain accesses,
control-flow operations, such as the for statement, numbers and arithmetic op-
erations are preserved as-is in their original form.

The commented original code is weaved with the generated code for clarity:

sc1 = initialState; // SC for: var f = ...
dc1 = [1,"__set__",["ref","string","scSend"]];

sc2 = initialState; // SC for: function (n,d)...
dc2 = [2,"__new__",[]];

sc3 = initialState; // SC for: d.getTime()



dc3 = [3,"getTime",["get"]];

sc4 = initialState; // SC for: f(42, ...)
dc4 = [4,"f",["ref","number","scSend"]];

sc5 = initialState; // SC for: new Date(100)
dc5 = [5,"__ctor__",["scSend","number"]];

sc6 = initialState; // SC for: Date
dc6 = [6,"__get__",["ref","string"]];

sc1(root_global, // var f =
dc1,
"f",
sc2(root.func, // function (n,d) {

dc2,
new FunctionProxy(

function ($this,n,d) {
var i = undefined;
for (i=1; i<=2; i=i+1) {
// n = n + d.getTime();
n = n + sc3(d, dc3);

}
return n;

}))); // };

sc4(root_global, // f(42,
dc4,
42,
sc5(sc6(root_global, // new Date(100));

dc6,
"Date"),

dc5,
100));

When executed, this code will perform message sends at each of the send
caches. The third send cache (sc3) will benefit from the caching mechanism. The
first time around the loop, the initialState function in the Photon runtime will
be called. Since getTime is a regular method call, Photon’s runtime will inline
the send semantics and specialize it for the number of arguments at sc3’s call
site by storing a specialized function in sc3, equivalent to:
sc3 = function ($this) {

return $this.get("getTime").call0($this);
};

Further calls will be made to this function rather than to initialState.

6 Performance

Currently there is no general purpose instrumentation framework that has been
shown to work on a wide-array of web applications, across browsers, and at
a reasonable performance cost. The task of porting to multiple browsers and
supporting the fast evolution of web standards is beyond the capacity of a small



research team, and we did not attempt it. The rest of this performance evaluation
should be read in that light.

Nonetheless, our work on Photon has produced interesting performance re-
sults. When compared to the slowdowns observed on other systems, they suggest
the approach helps reduce the perceivable latency on instrumented applications.

We identified interpreter-level performance as the target because from pri-
vate communications with other researchers and anecdotal evidence from pub-
lished work [11,10], this is what typically ends up being instrumented in practice,
without any portability across browsers or browser versions. That level of per-
formance is reported to be “barely noticeable on most sites” [11]. Our approach
provides a similar performance while being portable.

Our evaluation shows that Photon is portable across many popular browser
VMs and that it is faster than other published systems.

6.1 Setting

We chose CPU-bound benchmarks, which although not representative of typi-
cal web applications [10], represent the worst-case in terms of instrumentation
overhead. For this reason we have mainly used the V8 benchmark suite version
7 in our performance evaluation. These benchmarks are self-checking to detect
execution errors. We ran the benchmarks five times and took the average.

To investigate portability, we have used four different JS VMs in our experi-
ments: three VMs based on JIT compilers and one VM based on an interpreter.
The following web browsers were used:

– Safari version 6.0.2 (8536.26.17), which is based on the Nitro JS VM.
– Chrome version 25.0.1364.172, which is based on the V8 JS VM.
– Firefox version 20.0, which is based on the SpiderMonkey JS VM. Firefox

was run with the JIT enabled, and also with the JIT disabled (which causes
the SpiderMonkey interpreter to be used). To disable the JIT we have set the
following Firefox javascript options to false, as suggested by the SpiderMon-
key development team: ion.content, methodjit.chrome, methodjit.content,
typeinference. Note that disabling SpiderMonkey’s type inference actually
accelerates the execution of all programs because the interpreter does not
take advantage of the type information.

Chrome does not have an interpreter and recently, the Safari interpreter was
rewritten in an assembly language dialect for performance, making its modifi-
cation for instrumentation more complicated. We therefore think that the only
remaining interpreter that is both simple and fast enough for instrumentation is
the Firefox interpreter.

To simplify the description of the results, we will conflate the name of the
web browser with that of its JS VM.

A computer with a 2.6 GHz Intel Core i7 processor and 16 GB 1600 MHz
DDR3 RAM and running OS X 10.8.2 is used in all the experiments.



The experiments can be run by visiting the corresponding links from the
project web page6. Individual results are reported as well as average value,
standard-deviation, and ratios between configurations.

6.2 Related systems

To put the performance results we obtained in context, we compared against
alternatives. Either they ran fewer of the V8 benchmarks than Photon, they
had a higher slowdown or both. The related work section compares them with
Photon in more details.

Js.js [13] is a JS port of the Firefox interpreter compiled using the Emscripten
C++ to JS compiler. This is a heavy-weight approach with a significant perfor-
mance overhead and, presumably, would require a similar amount of effort to
instrument as if the Firefox interpreter was instrumented. The EarleyBoyer and
Splay benchmarks ran out of memory, RayTrace crashed the version of Chrome
we were using and RegExp would trigger a malloc error in Js.js. NavierStokes
would take more than 10 minutes to complete and the other benchmarks would
show slowdowns between 5243× and greater than 18515×.

Jalangi [12] is a record-replay and dynamic analysis framework for JavaScript.
We independently tested their system using V8 benchmarks using the precon-
figured virtual machine7 they provide on their website and found their system
to introduce slowdowns between 384× and 2520× during recording, except for
RegExp (15×) and Splay (29×). We also verified that on some of the interactive
application they used for testing, the slowdown was noticeable but not to the
point of completely hindering the interaction. The main take away is that al-
though some of the slowdowns on CPU-bound benchmarks may seem impressive,
the additional latency is acceptable in practice.

AspectScript [14] is similar to Photon but uses the aspect formalism as an
interface for designing dynamic analyses. We executed the latest version of As-
pectScript against the V8 benchmarks, and found it to be between 10× and
454× slower than Photon on Safari. Additionally, only four of the benchmarks
ran without errors.

JSProbes [3] and work by Lerner et al. [8] modified the host VM but both
are now incompatible with current browser VMs.

Narcissus could run none of the V8 benchmarks and was two orders of mag-
nitude slower than Photon on a micro-benchmark stressing the function calls.

In the next sections, we investigate the performance behaviour of Photon.
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Fig. 4. Relative performance of Photon on various VMs compared to the Firefox in-
terpreter

6.3 Comparison with interpreter instrumentation

Figure 4 gives for each benchmark and JIT VM the execution speed ratio be-
tween Photon with no instrumentation and the Firefox interpreter. Therefore, on
average, Photon without instrumentation runs the benchmarks faster on Safari
JIT (by 19%) and Chrome JIT (by 14%) than when they are run directly on
the Firefox interpreter. The execution speed with Photon is consistently faster
over all JIT VMs for Crypto and NavierStokes which run about 7× faster with
Photon on Safari JIT and Chrome JIT. The major increase in performance can
be attributed to a substantial proportion of the time spent in features that are
not instrumented by Photon, either native libraries or language features other
than object operations and function calls. The worst case for all JIT VMs occurs
for RayTrace, which is 2.5× to 5.5× slower when executed with Photon. This
shows that the performance of Photon running on a JIT VM is roughly in the
same ballpark as an interpreter.

6.4 Inherent overhead compared to JIT compilation

Figure 5 shows the slowdown caused by Photon on each VM relative to executing
the program without Photon on the same VM. These results mostly show that
(1) selective program transformation can benefit from the native performance of
features that are not instrumented, that (2) performance is not portable across
browsers, given the significant variability in performance results observed on the
same benchmarks between browsers, and (3) the interpreter is much less affected
6 http://elavoie.github.io/photon-js/
7 On OS X 10.8.5, on an 1.8GHz Intel Core i7 with 4 GB of RAM, with the virtual

image running LUbuntu 13.04 with 2GB of RAM and Jalangi commit 5f6d538d9e....
The virtualization was found to introduce a 15% slowdown compared to running the
V8 benchmarks on the host.



by program transformation than JITs are, which suggests that the peformance
of JITs is highly dependent on the nature of the code.

Newer experiments8 show the maximum memory usage ratios to be between
1.25× and 4.0× with EarleyBoyer(27.7/7.2MB) and Splay(164/92.5MB) being
the relative and absolute worst. The absolute memory usage suggests Photon is
practical on current desktop and laptop machines.

They also show that the host VM inline caching is crucial for Photon’s per-
formance and execution. Disabling inline caches on Chrome9 slows down Photon
by an additional factor between 9× and 156× and prevents EarleyBoyer from
completing because it runs out of memory.

Richards RayTrace DeltaBlue EarleyBoyer Crypto

Splay NavierStokes RegExp Geometric mean

0×

50×

100×

150×

200×

Safari JIT Chrome JIT Firefox JIT Firefox interpreter

Fig. 5. Inherent overhead (factor slowdown) of Photon on various VMs

6.5 Effect of send caching

For all benchmarks, at the end of execution, all caches that were executed at
least once are in one of the two optimized cases and all reified operations are
in a memoized state. Deactivating the optimization by performing the method
8 On OS X 10.8.5, on an 1.8GHz Intel Core i7 with 4 GB of RAM running Chrome

version (33.0.1750.117), because the old setup was not available anymore.
9 By starting it with the –js-flags="–nouse_ic" option.



Safari Chrome Firefox Firefox
JIT JIT JIT interp.

Benchmark simple fast simple fast simple fast simple fast
Richards 2.31× 1.06× 2.38× 1.26× 2.81× 1.07× 1.88× 1.24×

RayTrace 1.59× 1.07× 1.30× .93× 2.19× 1.02× 1.55× 1.15×

DeltaBlue 2.68× 1.11× 3.16× 1.01× 2.03× 1.02× 1.98× 1.19×

EarleyBoyer 2.18× 1.12× 2.31× 1.14× 2.71× 1.07× 1.78× 1.15×

Crypto 16.80× 1.23× 18.53× 1.00× 6.91× 1.00× 4.33× 1.30×

Splay 1.70× 1.68× 2.45× 1.37× 1.96× 1.05× 1.42× 1.17×

NavierStokes 29.17× 1.07× 39.41× 2.05× 11.86× 1.11× 5.65× 1.36×

RegExp 1.37× 1.01× 1.31× .99× 1.29× 1.02× 1.30× 1.03×

Geom. mean 3.54× 1.15× 3.90× 1.18× 3.03× 1.04× 2.15× 1.19×

Table 5. Execution speed slowdown of Photon with a simple and a fast instrumentation
of property read, write and delete

lookups on each operation slows down Photon by a factor between 29× and 320×
in addition to the previously reported slowdowns, and prevents EarleyBoyer from
running because of a stack overflow.

6.6 Performance with instrumentation

We have evaluated the performance of Photon with an instrumentation that
counts the number of run-time occurrences of the following object represen-
tation operations: property read, write and deletion. We chose this particular
instrumentation because it is simple, it covers frequently used object model op-
erations and it was actually used to gather information about JS (it can be used
to reproduce the object read, write and deletion proportion figure from [10]).

Two implementations of this instrumentation were used; a simple (~16 lines
of code) and a fast version (~100 lines of code)10. The simple version does not
exploit memoization and corresponds to the straightforward implementation:
incrementing a counter and calling the corresponding object representation op-
eration. The fast version uses the memoization protocol to inline the counter
incrementations inside the optimized version of the object operations.

The execution speed slowdown of Photon with each version of the instru-
mentation for each JS VM is given in Table 5. This means that on Safari JIT
and Chrome JIT, on average, the benchmarks run with the fast version of the
instrumentation on Photon essentially at the same speed as the uninstrumented
original benchmarks directly on the Firefox interpreter, while in many cases the
simple version is sufficient to obtain a reasonable performance.

7 Limitations

Due to our implementation of the prototype chain, accessing the __proto__ prop-
erty leaks the internal representation. This can be solved at a substantial per-
10 https://github.com/elavoie/photon-js/tree/ecoop2014/instrumentations



formance cost by testing every property access. Alternatively, it can be miti-
gated with no run-time penalty by detecting, at compile-time, accesses to the
__proto__ property and calling the object representation getPrototype method
instead. However, the possibility of dynamically generating the __proto__ name,
even if very unlikely in practice, render it unsound.

Meta-methods can conflict with application methods if they have the same
name. This limitation will be solved in the next version of the standard, when
unforgeable names will be available in user space. Until then, we can rely on
unlikely names to minimize possible conflicts with existing code.

Setting the __proto__ property throws an exception. This might be fixed
by invalidating all caches should the prototype of an object change. A more
sophisticated mechanism could be devised if the operation is frequent.

Operations on null or undefined might throw a different exception because
they might be used as base objects for an object representation method. The
exception will say that the object representation is missing instead of the prop-
erty. This problem only happens for incorrect programs because otherwise an
exception would still interrupt it. We don’t think it is worth handling.

Functions passed to the standard library are wrapped to remove the extra
arguments introduced by our compilation strategy. However, the wrappers do not
perform message sends, therefore these calls are invisible to an instrumentation.

Photon objects cannot be manipulated outside of Photon, the execution en-
vironment (e.g. DOM) needs to be virtualized. For the DOM, Andreas Gal’s
implementation in JavaScript seems a good starting point11.

8 Related Work

The layering of a metacircular implementation implementing reflection tech-
niques with an object-oriented approach was beautifully explained in “The Art
of the Metaobject Protocol” [7]. This paper revisited those ideas while consider-
ing the performance behavior of modern JS VMs.

Sandboxing frameworks for JS, such as Google Caja [1], BrowserShield [9]
and ADSafe [2] guarantee that guest JS code cannot modify the host JS en-
vironment outside of a permitted policy. We focus here on Google Caja as a
representative candidate. The Caja sandbox provides a different global object
to the guest code and performs a source-to-source translation to ensure that
all operations on host objects are mediated by proxies enforcing a user-defined
security policy. Photon also provide a different global object for the purpose
of simplifying reasoning about instrumentations while providing an acceptable
level of performance. Our sandboxing strategy does not need to be as stringent,
therefore we deem acceptable the possibility of leaking the native objects by
accessing the __proto__ property.

JSBench [11] performs instrumentation of object operations and function
calls for recording execution traces of web applications that can be replayed as

11 https://github.com/andreasgal/dom.js



stand-alone benchmarks. JSBench instrumentation is specially tailored to the
task of recording benchmarks while Photon aims to be a general framework.

The idea of using aspect-oriented programming for profiling tasks has been
explored in the past, although some limitations of the model have been identi-
fied (e.g., [4]). AspectScript [14] has similar aims as Photon, namely providing
for JS a general interface for dynamic instrumentation of object operations and
function calls. It uses a source-to-source translation scheme with a single reifier
primitive which is analogous to our message-sending primitive. Compared to our
instrumentation interface, they use the dynamic weaving of aspect formalism in-
stead of our “operations as methods” approach. Because of the use of the aspects
formalism, their approach provides better encapsulation of the instrumentation
strategy at the expense of flexibility and performance.

Js.js [13] is a JS port of the Firefox interpreter compiled using the Emscriptem
C++ to JS compiler. It is intended for sandboxing web applications. The result-
ing JS interpreter then runs in the browser on top of an existing VM. Photon
avoids reimplementing features other than object operations and function calls.
The resulting implementation is both faster and simpler to instrument.

Other approaches target the host VM for efficiency reasons. JSProbes [3]
is a series of patches to the Firefox interpreter that allow instrumentations to
be written in JS and target pre-defined probe points, such as object creation,
function calls and implementation events such as garbage collector start and
stop events. JSProbes provides much of the same properties as Photon at a much
lower execution overhead and with additional information about implementation
events that are inaccessible to Photon. At the time of writing, maintenance of
JSProbes has stopped, making the approach unavailable in practice. In a different
setting, Lerner et al. explored the requirement for implementing aspect support
in an experimental JIT-compiler [8]. They reported a simpler and more efficient
implementation than other aspect-oriented approaches. Their work was intended
to inform possible ways to open native implementations to instrumentation with
an aspect formalism. So far, no production VM implements aspects, which makes
this approach unavailable in practice. Photon does not require modifications to
the host VM. It therefore does not add to the maintenance cost of production
VMs to be usable in practice.

Jalangi [12] is a record-replay and dynamic analysis framework for JavaScript.
It performs an ahead-of-time (static) source-to-source translation of the program
to replace instrumented operations with function calls. The instrumented pro-
gram is executed to record a trace of execution, which is then used to perform
dynamic analyses. Being static, their translation strategy cannot handle the
dynamic aliasing of eval or Object.create. Photon however, by virtualizing the
execution environment, provides wrapper around these methods, which supports
dynamic aliasing.

Narcissus JS in JS interpreter implementation by Mozilla that reifies all the
language operations of the language. However, compared to Photon, Narcissus
is much slower and none of the V8 benchmarks could be executed.



9 Conclusion and Future Work

Run-time monitoring of JS applications is crucial to obtain empirical data about
current web applications, to improve their efficiency and improve VM technolo-
gies. Unfortunately, there is no general purpose instrumentation framework that
has been shown to work on a wide-array of web applications, across browsers,
and at a reasonable performance cost. Existing approaches have either modified
browser VMs at the expense of portability, or relied on source-to-source trans-
formations that are complex to develop and still incur a significant overhead.

In this paper, we explored the performance aspects of virtual machine lay-
ering, in which a portable implementation of a JS implementation exposes
implementation-level operations that can be redefined at run time to monitor the
application execution. We have shown that by a selective dynamic translation of
source elements, combined with run-time feedback to optimize the reified opera-
tions, we could obtain significantly better performance than existing approaches
when exposing object operations and function calls to the point where the ap-
proach can be competitive with the instrumentation of a browser interpreter
while being portable across VM implementations.

The major challenge remaining, which prevents the application of the ap-
proach in practice, is the full and efficient virtualization of the execution en-
vironment, whether it is the browser libraries such as the Document Object
Model (DOM) or the extensions of the NodeJS framework. One requirement is
the possibility of full intercession of all the code loaded. Work is under way to
extend Debugger API in Firefox based on the work done at Mozilla by one of
the authors to support it. The other requirement is the proper wrapping of all
the environment libraries, which is a significant engineering effort but could be
reusable for different implementation strategies of virtual machine layering and
instrumentation APIs. This could be tackled as a community effort.
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A Artifact Description

Authors of the artifact. Erick Lavoie

Summary. The artifact comprises both Photon, the layered virtual machine
used for dynamic program analysis described in the previous paper, and the
performance experiments used to obtain the performance figures. The current
implementation of Photon initially performs a source-to-source translation of
JavaScript code, while running over NodeJS. The resulting code then runs in
the browser in a virtualized environment that abstracts the standard libraries
and also includes Photon, for correct translation of dynamically generated code.
The experiments come packaged as ready-to-run web pages for easy comparison
of performance results with newer configurations of browser and machines.

Content. The artifact package includes:

– a set of experiments packaged as ready-to-run web pages;
– the Photon system;
– detailed instructions for using the artifact and running the experiments,

provided as an index.html file.

To simplify repeatability of our experiments, we provide a VirtualBox disk image
containing a Ubuntu Linux image fully configured for testing Photon.

Getting the artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of Photon code is available on GitHub at
https://github.com/elavoie/photon-js and a copy of the index.html page, in-
cluding all the performance experiments, is available at the corresponding GitHub
page http://elavoie.github.io/photon-js/.

Tested platforms. The artifact is known to work on any platform running
Oracle VirtualBox version 4 (https://www.virtualbox.org/) with at least 5 GB
or free space on disk and at least 1 GB of free space in RAM.

License. MIT Licence

MD5 sum of the artifact. 7d38dddb53c801fff254123f45074144

Size of the artifact. 1.03 GB


