A Scheme compiler for
Hardware Dataflow Machines

Xavier Saint-Mleux*!, Marc Feeley*'!, Jean-Pierre David '

f Ecole polytechnique

* Université de Montréal -
de Montréal

ABSTRACT

We describe a prototype compiler that compiles general functional programs into dataflow par-
allel hardware. The compiler supports non-tail function calls and higher-order functions. Our
approach makes it possible for software developers to design hardware embedded systems with
little prior knowledge of electronic circuits.

1 Introduction

This paper presents a compiler for a subset of the Scheme functional language that generates
descriptions of hardware dataflow machines as output, without any human intervention in
the process. The dataflow machine will be fully implemented in hardware, for example in
an FPGA. It is derived from an existing software compiler, with a back-end that instantiates
generic components written in VHDL. The output specification can then be fed to synthesis
tools to get an actual physical implementation of the circuit.

The compiler as described below is a work in progress and is no more than a proof of
concept but it can already be used to easily and safely implement any algorithm in hardware.
Several successful tests have been performed using Synplicity and Altera synthesis software
and an Altera Stratix FPGA.

2 Approach

The basic idea is to use distributed local memories instead of a global one in order to max-
imize the potential for parallel circuits. Many systems based on dataflow machines suffer
from a bottleneck for memory accesses[GC94]; this is what we aim to avoid. In our proto-
type, the only kind of data allocation that may occur is the creation of a function closure.
Therefore, each procedure that actually needs to remember about a local environment is as-
sociated with its own block of memory in hardware. Data is allocated each time a closure is
created and it is automatically deallocated when the procedure is called.

'E-mail: {saintmlx,feeley}@iro.umontreal.ca
?E-mail: jpdavid@polymtl.ca

3 Source Language

The source language is a functional language based on S-expressions and using a parenthe-
sized syntax. It supports the following types of primitive expressions:

- Integer literals

- Variable references

- Procedures: (lambda (params) body)

- Procedure calls

- Conditionals: (if cond true—-exp false-exp)

- Binding constructs: 1let, letrec and par

- Expression sequences

- I/0O channel procedures: (input-chan name) and (output-chan name)

Primitives are supplied for arithmetic operations and comparisons on integers. As an exam-
ple the recursive factorial function can be implemented and called as follows:

(letrec ((fac (lambda (n) (if (< n 2) 1 (x n (fac (- n 1)))))))
(fac 8))

Currently, the only types of data supported are integers and closures. Closures can be used
in a limited fashion to create data structures, as in the following example:

(let ((cons (lambda (h t) (lambda (f) (f a b))))
(car (lambda (h t) h)))
(let ((pair (cons 3 4)))
(pair car)))

The procedure call (cons 3 4) allocates memory for the two integers, but this memory is
reclaimed as soon as pair is called; pair cannot be called again and the value 4 is lost. The
only way to fetch the content of a closure is to call it and then recreate a similar copy using
the data retrieved.

The par binding construct is syntactically and semantically similar to the 1et construct
but it indicates that the binding expressions should be evaluated in parallel. They can be
seen as a calculation with a continuation that takes several “return” values.

The I/0O channel procedures create named input or output channels that are used like
procedures. Input channels are thunks (functions with no arguments) that return the value
read and output channels take the value to be written as an argument and always return 0.
The name given as an argument to input-chan and output-chan will be used as a signal
name in the circuit. For example, the following specification creates a circuit that adds the

values read from two different input channels, writes the sum on an output channel and
starts again:

(let ((cinO (
(cinl (
(cout (output-chan chan_out)))
(letrec ((doio (lambda () (cout (+ (cinl) (cinZ2)))
(doio))))

input-chan chan_in0))
input-chan chan_inl))

(doio)))

4 Generic Hardware Components

The output circuit will be made of instantiations of the following generic components:
- Stage (Fig. [L(a)): A register followed by some combinatorial circuit that implements prim-
itive calls such as addition and comparison.

| | } \ / | t | t } }

C:; | /N] | [N } q |

(a) stage (b) fifo (c) split (d) merge (e) closure (f) par (g) input (h) output

Figure 1: Generic Components

- Fifo (Fig. [[(b)): A memory that can accumulate tokens when the rest of the circuit is not
ready to process them.

- Split (Fig.[I(c)): Sends any token received to either output channel depending on a supplied
boolean value.

- Merge (Fig. [L(d)): Sends tokens received on any input to the output, one at a time.

- Closure (Fig. [I(e)): Memory to allocate the local environment for a function closure. When
a token is received for allocation (closure instantiation), part of its data is saved in the mem-
ory at an unused address and the rest is sent as output along with that address. When a
token is received for reading (closure call), part of its data is used as an address to fetch the
environment from memory and this environment is sent as output with the rest of the input
data; that address is marked as free again.

- Par (Fig. [[(f)): Memory for the synchronization of expressions evaluated in parallel. When
a token is received for forking, part of its data is saved in the local memory at an unused
address and two tokens containing the rest of the input data and that address are sent si-
multaneously as outputs. When a token is received for a join, part of its data is used as an
address in the memory. If it is the first token to arrive for that address, its data is saved along
with what was already at that address; if it is the second one, saved values are fetched from
the given address and sent as output along with the input data.

- Input (Fig. [I(g)): Reads data from an external synchronized input channel.

- Output (Fig. [L(h)): Writes data to an external synchronized output channel.

5 Back-End

The back-end creates pipelines by connecting instances of generic components one after the
other. Tokens flowing through these pipelines will contain all live variables at a given point
in the program. All values, integers or closures, use busses of the same fixed width in bits;
closures are identified by a procedure ID and possibly an address to the local environment.

After the rest of the compilation process (CPS conversion[|[Appe89], 0-CFA[Shiv9l], etc.),
the results of all simple expressions (primitive applications to literals or variable references)
are bound to variables in 1et expressions. Each let is translated into a stage followed by a
combinatorial circuit that implements the required primitives, itself followed by the circuit
that corresponds to the 1et’s body.

Procedure calls are implemented by sending a token with all parameters to the part of
the circuit that implements the procedure. The procedure ID is compared simultaneously
with all possible IDs for this calling point and the data is routed accordingly.

Procedures can be called from different points in the program so they are preceded by a
tree of merge nodes that route tokens from any calling point to the circuit that implements
the body of the procedure.

Closures are implemented using the component of the same name. Allocation is done
when the closure is declared and the reading stage is placed at the beginning of the closure’s
body.

Conditionals are implemented as a split node where the value of the conditional expres-
sion is used to route the input token to either the “true” branch or the “false” one.

Parallel bindings are implemented as one or more par nodes in a tree. Each circuit that
corresponds to a parallel expression is connected to a fork output and to a join input. The
body of the par expression is connected to the join output.

Input and output channels are implemented like procedures with input or output com-
ponents as a body:.

6 Results

We have tested the prototype on classic functional algorithms to produce dataflow machines
on an FPGA. The compiler’s VHDL output is fed to Altera’s Quartus-II development envi-
ronment and synthetised using Synplify Pro. The only human intervention necessary at this
point is the assignment of the circuit’s external signals to FPGA pins; other constraints can
also be given to the synthesis tool, for example to force it to try to produce a circuit that runs
at a specific clock speed.

As an example, a quicksort algorithm has been implemented in an Altera Stratix EP1S80
FPGA with a speed grade of -6. As explained above, the data structures (lists) are imple-
mented as closures. The resulting circuit uses about 12% of the reconfigurable logic and
about 7% of the memory available in the FPGA for lists of up to 256 16-bit elements and can
run at clock rates above 80MHz.

7 Conclusions and Future Work

Even though the compiler presented in this paper is a complete working system that can
generate circuits for any algorithm, it lacks many of the primitives that would be needed to
efficiently implement some basic concepts such as data structures and the procedures to ma-
nipulate them. Also, care has to be taken when writing circuits that use parallel expressions
since those might introduce deadlocks.

Future work will concentrate among other things on data structures, automatic and
manual reclaiming of unused storage, safety of parallel expressions, different modes for
input/output channels and compile-time optimizations.

References

[Appe89] A. APPEL AND T. JIM. Continuation-passing, closure-passing style. In POPL
'89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 293-302. ACM Press, 1989.

[GC94] C. GIRAUD-CARRIER. A reconfigurable dataflow machine for implementing
functional programming languages. SIGPLAN Not., 29(9):22-28, 1994.

[Shivol] O. SHIVERS. Control-flow analysis of higher-order languages of taming lambda. PhD.
Thesis, Carnegie Mellon University, 1991.

	Introduction
	Approach
	Source Language
	Generic Hardware Components
	Back-End
	Results
	Conclusions and Future Work

