Code Versioning and Extremely Lazy Compilation of Scheme

Baptiste Saleil

Université de Montréal
baptiste.saleil@umontreal.ca

Abstract

Dynamically typed languages ensure safety through the use
of type checks performed at run time. Static type inference
has been used to remove type checks but this approach is
limited in the absence of code duplication. This paper de-
scribes an alternate approach that generates multiple ver-
sions of the code to specialize it to the types that are observed
at execution time by using an extremely lazy compiler. The
laziness is important to limit the number of versions (limit
code bloat) and to generate more specialized code (increase
performance). We describe LC, a Scheme compiler which
implements this code generation approach. The compiler is
currently a prototype that cannot run large benchmarks, but
an examination of the generated code shows that many dy-
namic type tests can be removed.

1. Introduction

Dynamic languages are widely used both for writing small
scripts and more complex programs because they are expres-
sive and easy to use, but often they suffer from a lack of
performance. A main cause of this performance issue is that
the code does administrative work at execution such as type
checking, boxing and unboxing, etc.

As an example, consider this simple Scheme [1] expres-
sion:

(car (f 42))

In principle, a type test is performed by the car operation
at run time to ensure that the result of (£ 42) is a pair. If it
isn’t, an error will occur at run time when invoking car.

An approach is to do a type inference to determine types,
if possible, before code generation [5]. Even if the informa-
tion known about the types is partial (but conservative) the
compiler can generate better machine code that is suitable
for all executions. Performing an expensive and more precise
type analysis is unfortunately not advisable in the context of
Just In Time (JIT) compilers because compilation, which is
done at run time, will negatively impact the execution time.

This paper describes code versioning, a code generation
approach for JIT compilers that aims to use this compile time
information to generate multiple versions of the same ma-
chine code, each one suitable for a particular execution con-
text. This approach is illustrated by the following example:

Marc Feeley

Université de Montréal
feeley@iro.umontreal.ca

(define (foo a)
(car a))

(foo ’(1 2 3))
(foo (read))

In this code, there are two executions of the primitive
car. In the first one with a=> (1 2 3) the compiler knows
that the primitive is executed with a pair as argument. In
the second call to foo with a=(read) it knows that car
is invoked with a value of the same type as returned by
(read). Given that the type is unknown, the compiler will
generate two versions of the primitive in this order:

Pair version On the first call to foo, the compiler knows
that a is a pair, and knows that car expects a pair. It will
then generate a version which directly accesses the car
of the pair without performing any type test.

Generic version On the second call, the compiler has no
information about the type of a. It will generate a version
that contains a pair? type test on a.

While code versioning is extensible to other purposes,
this paper focuses only on removing type checks. We also
show how extremely lazy compilation can improve code
versioning both by improving its action to remove more type
tests and limiting the number of generated versions with the
goal to balance the extra cost of generated code size.

Other existing techniques already generate multiple ver-
sions of code and some of them work at the procedure or
loop level. Our technique aims to generate multiple versions
of all pieces of code as soon as the execution reaches a point
that the compiler can specialize with a recently discovered
type information. A consequence of this is that each func-
tion can have multiple entry points which causes some im-
plementation issues. We also present LC, our Scheme JIT
compiler that aims to implement all mechanisms required to
use code versioning and extreme laziness. LC avoids the use
of an interpreter and compiles executed parts of source pro-
grams directly to machine code.

This paper is organized as follows. Section 2 explains
some choices made in accordance with our goal. Section 3
presents the concept of code versioning and shows how it
can be implemented. Section 4 explains how the code ver-

sioning approach can be improved by using extreme laziness
and how it can reduce the size of the generated code. This
section also explains implementation issues. Then, section 5
briefly explains current experimental results. In Section 6 we
discuss the current limitations of our system and how they
can be avoided. Finally, sections 7 and 8 present future and
related work. Because LC is at an early stage of development
we do not have extensive benchmark results yet.

2. Compiler specifications

LC is a JIT compiler developed to experiment with code
versioning and lazy compilation for the Scheme language.
We made some choices consistent with this main goal:

Representations The compiler uses no intermediate repre-
sentation. It directly reads S-expressions and translates
executed code into machine code. Therefore, the com-
piler does not lose time generating other code represen-
tations. Moreover, because we chose an extremely lazy
compilation, the compiler will never run analysis such as
Data/Control Flow Analysis so the use of a representa-
tion such as Static Single Assignment (SSA) [3] or Three-
Address Code (TAC) [2] is discarded.

Compiler only Code versioning aims to generate faster
code by generating specialized versions of machine code.
Because our goal is to evaluate the benefits of this tech-
nique on generated machine code, we chose the strategy
to only compile executed code and never execute it with
an interpreter. So LC uses only a pure JIT compiler and
never interprets code.

Target platform Because we focus our research on the ben-
efits of the context on the generated machine code, the
target platform is not critical. We arbitrarily chose to
generate code for x86_64 family processors using only
a stack machine (without any register allocation algo-
rithm).

3. Code versioning
3.1 General principle

In statically typed languages, types are known at compile
time and the compiler can generate a unique optimized ver-
sion of the code suitable for all executions. In dynamically
typed languages, type declarations are not explicit so the
compiler embeds type tests on primitive operations to de-
tect type errors at run time. Run time type tests are one of
the main dynamically typed languages performance issues.
A solution to limit this issue is to use type inference to de-
termine types in expressions and generate code according to
this information. Type inference often involves static analy-
sis which is not suitable for JIT compilers. Other systems al-
low mixing dynamically typed languages with explicit type
declarations to improve performance (e.g. Extempore [13])
but such solutions lose the main characteristic of dynamic

PUSH a

PUSH b

ADD

JO overflow

JMP next-generator

Figure 1. Generated version, in pseudo assembly, for con-
text ((a . number) (b . number))

PUSH a

PUSH b

CMP (type a), (number)
JNE type-error

ADD

JO overflow

JMP next-generator

Figure 2. Generated version, in pseudo assembly, for con-
text ((a . unknown) (b . number))

languages. The JIT compilers, widely used in dynamic lan-
guages, allow to postpone the machine code generation of
executed code. A benefit is that the compiler can use infor-
mation newly discovered by execution to better optimize the
future generated code. Code versioning uses this informa-
tion to generate multiple versions of the same piece of code,
each one associated to a particular entry context and opti-
mized for this context. This involves that each piece of code
is now accessible by as many points as versions generated.
However, the coexistence of these versions will result in an
increase of the generated code size, but we will show that
this extra cost is attenuated by the use of an extremely lazy
compilation.

3.2 Implementation

Each piece of code is represented by a generator. The gen-
erator is the object that manages the versions of this piece of
code and acts as a code stub. A simple example of code ver-
sioning is for the Scheme expression (+ a b).The compiler
creates a generator for this expression. Let g be the generator
of this expression. At the beginning of execution, no version
is yet generated. As soon as an instruction i transfers con-
trol to this generator, and assuming that ctx is the current
context at this point, the generator follows this algorithm:

1. if g does not contain a version associated to ctx,
Generate a new version based on ctx*

2. Replace the destination of i by the address of the version

3. Transfer control to the newly generated version

*note that if 1 is the last instruction generated, we can just
overwrite 1 with this new version.

Figures 1 and 2 show an example of two generated ver-
sions of the same expression (+ a b) based on two differ-
ent contexts. Note that we use association lists to represent

contexts mapping identifiers to types. Figure 1 is based on
a context in which we know that a and b are both numbers.
So it is useless to generate dynamic type tests and we can
directly use the two values. In figure 2, we know that b is
a number but this time we do not have information about
the type of a. We can then directly use the value of b and
generate a dynamic type test for a only.

3.3 Improved closures

The traditional flat closure representation [7] is compatible
with code versioning. The main problem of this represen-
tation is that the procedure has only one entry point. The
compiler must generate code suitable for all executions and
this looses information about the argument types. In order to
take better advantage of code versioning, we decided to keep
multiple entry points corresponding to versions by modify-
ing this flat closure representation. The first field is now a
reference to a table which contains the entry points of the
procedure. Because of higher order functions, we must as-
sign an index to a given context that is the same for all clo-
sures. We will call this table the closure context table (cc-
table) for the following of this paper. For example, if a func-
tion is called with two arguments a and b and the context
ctxl ((a . number) (b . number)), the compiler will
generate a code sequence similar to figure 4. Here the com-
piler associates ctx1 to the index 3 in the cc-table. So the
index for this specific context will now be the same for all
closures. When the compiler creates the cc-table, it fills all
the fields with the address of the function stub because there
is currently no generated version. When the stub is called,
the generator creates a new version associated to the context
and patches the cc-table of the closure at the correct offset to
jump directly to the generated version. Because our compiler
does not have a garbage collector yet, it currently creates a
fixed size table for each closure and stops execution on ta-
ble overflows. A consequence of this approach is that each
cc-table must be big enough to contain an entry for each call-
site context of the program. This limitation is discussed in a
dedicated section.

Figure 3 shows the changes made to classical flat closure
representation. The first closure on top is an example of a
closure just after its creation. This closure contains n non-
local variables and a cc-table of size 4. The second one,
at bottom, is the same closure after some executions with
two generated versions, one at address V; for the context
associated to index 1, and the other at address V3 for the
context associated to index 3.

4. Extremely lazy compilation

While many Scheme compilers use Ahead Of Time (AOT)
compilation (e.g. Gambit [12], CHICKEN [11]), there are
several strategies used by JIT compilers for dynamic lan-
guages. Some of them only compile hot spots to machine
code to improve performance and use an interpreter for other

Closure

l

—>| Stub addr | Stub addr | Stub addr | Stub addr |

| non-local 1 | | non-local n | |

Closure

| non-local 1 |

—>| Stub addr | Addr V; | Stub addr | Addr Vs |

| non-local n | |

Figure 3. Closure example at creation, and with two gener-
ated versions

; pop closure

POP RI1

; return address is the
; continuation stub address
PUSH continuation

PUSH a

PUSH b

; get cc-table

MOV R1 <- [R1]

; jump at offset 3

JMP [R1+3%8]

Figure 4. Assembly code to jump to a procedure entry point
associated to a context

executed code [6]. This can be done at multiple levels such
as loops and functions. Another widely used strategy is to
compile executed pieces of code just before their execution
(e.g. Google V8 [10]). With this strategy, the more lazy the
compiler is, the more it compiles only the executed code. For
example, a compiler may compile only executed functions,
but some branches of the function may not be executed, or
only compile executed branches to be lazier. Using this strat-
egy the compiler doe not lose time to compile code that is
never executed.

4.1 An asset for code versioning

There are two advantages to using an extremely lazy com-
piler: Compile only executed code to save time and improve
the efficiency of code versioning. If the compiler is lazier, it
has more useful information in the current context:

(let ((v (fo00)))
(+ v 42))

Machine code

Lazy-code object
Versions :
Generator CTX 8 — 1/
CTX1| A |
caxa| 7|
| Successor | CTX 2 \

Y

Figure 5. Example of lazy-code object

In this example, if the compiler is not lazy enough it does
not have information about the type of v and generates a dy-
namic type test of v for the expression (+ v 42). With an
extreme laziness, the compiler generates the machine code
after the foo function returns and it’s possible that the type
of v is known. If v is a number, the generator compiles a
version without dynamic type test on v. At this point, the
compiler does not care about the future executions. If foo
always returns a number, the generator never compiles other
versions and no type test is performed. On the other hand
if foo returns other types, then other versions will be gen-
erated. In these two cases the extreme laziness removes the
type test (at least in some cases) and improves performance.

One of the main weaknesses of code versioning is the
coexistence of multiple versions of the same code which
results in an increase of generated code size. Taking the
expression (+ a b) as an example, we have to generate
exactly 5 versions:

e No dynamic type test if a and b are numbers

® One dynamic type test on a if b is a number and a is
unknown

® One dynamic type test on b if a is a number and b is
unknown

¢ Two dynamic type tests if both are unknown
e An error if the type of a or b is known but not number
The extreme laziness allows the compiler to generate only
executed versions of the code. Thus the number of versions

is reduced which in turns reduces the size of the machine
code.

4.2 Implementation

To keep the advantage of code versioning and be extremely
lazy, LC uses lazy-code objects. Each piece of code of the

(define (gen-ast ast successor)

(if (eq? (car ast) ’+)
(let* ((lazy-add
(make-lazy-code
(lambda (ctx)
(pop rl)
(pop r2)
(add r1 r2)
(push r1)
(jump-to successor
ctx))))
(lazy-argl
(gen-ast (caddr ast)
lazy-add)))
(gen-ast (cadr ast) lazy-argl)))

(let ((obj
(gen-ast ’(+ a b)
(make-lazy-code
(lambda (ctx)
(pop rl)
(return))))))
(execute obj))

Figure 6. Creation of lazy-code objects chain for expression
(+ a b)

source program is represented by one of these objects. Fig-
ure 5 shows an example of a lazy-code object. This object
contains two main elements. The first one on the left is the
generator presented in Section 3.2 which is able to generate
a new version of the code that it represents. The second on
the right is a table which contains all the addresses of gen-
erated versions in memory, each one associated to the entry
context. All lazy-code objects are used similarly to Continu-
ation Passing Style, when the compiler creates one object, it
also gives the successor object (represented at the bottom of
figure 5). Again with the example of expression (+ a b) if
the compiler knows that both are numbers, and if it does not
care about overflows, it creates exactly 4 lazy-code objects:
(1) End of program object. This will clean stack, restore reg-
isters and return. This object is the last in execution flow so
it does not have successor object. (2) Object for +. The code
generated by this object performs the add operation: it will
pop two values from the stack, add them, and push the re-
sult. When the compiler creates this object it gives object 1
as successor. (3) Object for b. This object generates the code
to compute the value associated to identifier b. i.e. it pushes
the value on the stack. For this object, the successor is object
2. (4) Object for a. This time the successor object is object 3.
Figure 6 shows an example of the code which creates these
4 objects for this expression.

So the compiler creates a chain of lazy-code objects. At
this point no machine code is yet generated for the expres-
sion. To execute the expression, the compiler transfers con-
trol to the generator of object 4. This generator follows the
algorithm presented in Section 3.2 to generate an inlined
version (or patch the jump). Because the context cannot
be changed the compiler can trigger multiple generators to
compile code as long as a branching expression is not yet
encountered. This removes the useless jumps between ver-
sions in execution flow. In the previous example, as soon as
the generator of a is called, the compiler will generate all
machine code because there is no branching instruction until
the end of this small program.

4.3 Procedure call problem

Because the compiler is lazy, it does not know the position of
the entry point of the continuation when it generates the code
to call a procedure. As shown in figure 7, our solution is to
create a temporary code stub for this continuation. When the
compiler generates the code for the call site, it pushes the
address of this temporary stub as return address and jump,
using closure, to the generator (or existing version associ-
ated to this context) of the procedure. When the compiler
generates the code of the procedure return, it writes a classic
return instruction which actually jumps to the continua-
tion generator. As soon as the continuation is generated, the
stub patches the call site to replace the current return address
(continuation stub address) by the actual address (position of
the machine code of continuation). Note that the context is a
mandatory argument since the procedure stub cannot gener-
ate a version without this information. The push closure
instruction is doubly useful here, first it is used to access
non-local variables from generated code, but it is also used
by the procedure stub to patch the cc-table as explained be-
fore. The right side of the figure shows the state after execu-
tion of the call site, procedure, and continuation.

4.4 Context construction

In order to take maximum advantage of code versioning
and remove even more type checks, it is important to have
as much information as possible within the context when
compiling a piece of the code. There are two ways to build
this context.

When the compiler is compiling constants, the type of
the constant is known at compile time and we can extend
the context to generate the next objects. Assuming the com-
piler uses a context that associates a type to each value on
the stack, if it generates the code for a lazy code object con-
taining a constant (10 for example), then it will generate an
instruction push 10 and, as there are no branches, will start
generating the next object by adding the type information
number to the value on top of the stack. Therefore, if the
next object uses this value (in a + for example) the dynamic
type test on the value is then unecessary.

The second possibility to build up the context is to take
advantage of the lazy compilation and the organization of the
objects, that is similar to continuations, to have more infor-
mation at execution. Let us take, for example, the expression
(+ (+ a 1) (+ a 2)).In this case, a flow-sensitive static
analysis [8] should detect that the second type test on a is
not necessary. Even if such analysis can be performed in fast
way, their cost is significant for a JIT compilation. The figure
8 shows, though simplified, the lazy code objects created for
this expression. This figure also shows an example of execu-
tion where both the information about the type of each value
on the stack and the types related to identifiers are contained
within the context. As soon as the expression is executed the
generation of the first block starts. The stack is then empty
and the compiler doesn’t know the type of a yet. The com-
piler will generate the code for a and then start the genera-
tion process of the next block with the new context within
which the stack contains an only unknown element. When
the code of the first primitive + is created for that version,
the compiler doesn’t know the type information regarding
a and will then generate a dynamic test. The next block in
the execution flow will then be created with the new context
within which the compiler already knows that a is a num-
ber. When the second primitive + is reached, the compiler
knows that the two operands are numbers and no dynamic
test is then necessary. The process will be the same for the
third primitive. Here, we notice that the compiler can take
advantage of this design to improve the context and remove
useless tests without influencing performance which static
analysis would do.

S. Experimental results

As our implementation is still a prototype, it is then impos-
sible to run large tests. However, current tests show that the
compiler removes a lot of dynamic type tests. As an exam-
ple, figure 5 shows the execution times needed to compute
the 40th Fibonacci number in 3 ways.

The first one uses LC. This execution time also contains
JIT compilation. The second one is to execute a binary
compiled using Gambit in similar conditions (e.g. inline
primitives) and the last one is the same than the previous
though in not safe and fixnum mode. So the third case does
not execute any type tests and can be taken as a reference.

Although the use of LC makes the computation slower,
it’s only slower by a factor of about 1.33. There are two
explanations to this result: The compiler currently doesn’t
do any optimization on generated code and uses a stack as
execution model.

In the example of Fibonacci recursive function, code ver-
sioning allows the compiler not to execute any test if n < 2
(instead of 1 without type information of code versioning)
because the compiler knows the parameter type. It will exe-
cute exactly 2 tests for a call with n > 1 (instead of 5 with-
out type information of code versioning) because the com-

PUSH argl

PUSH

PUSH argn

PUSH closure

PUSH

PUSH context

Y

Generator

JMP —

Generator
Versions :

PROCEDURE
STUB

CONTINUATION
STUB

PUSH argl
PUSH
PUSH argn
PUSH closure
PUSH
PUSH context
w [Generator]
J [Generator]
Versions :
CONTINUATION
cx 1] STUB
PROCEDURE
STUB
4
INSTRUCTION 1 [« »{ INSTRUCTION 1

INSTRUCTION 2 INSTRUCTION 2

Figure 7. Procedure call before and after execution

stack: ()

ctx: ((a . unknown))

stack: (unknown)
ctx: ((a . unknown))

stack: (number unknown)

ctx: ((a . unknown))

stack: (number)

ctx: ((a . number))

stack: (number number)

ctx: ((a . number))

stack: (number number number)

ctx: ((a . number))

stack: (hnumber number)

ctx: ((a . number))

stack: (number)

ctx: ((a . number))

Figure 8. Simplified representation of lazy code objects
chain for expression (+ (+ a 1) (+ a 2)) with example
of context during generation.

Implementation Time (ms)
LC 2411

GSC 1810
GSC (fixnum and not safe) | 757

Figure 9. Execution time to find the 40th Fibonacci number.

piler must test the type of returned values for the addition
operands.

6. Limitations
6.1 Closure size

The combination of code versioning and extreme laziness
has some limitations. In this section, we explain these limi-
tations, and discuss potential solutions. The first major limi-
tation is the construction of closures. As said in Section 3 all
closures must follow the same mapping of context to entry
point index in cc-table. Therefore all closures are the same
size in heap whether it exists a lot of versions or none for a
procedure. Because the actual number of used contexts itself
depends on execution, thus the better way to measure the
impact of this limitation in heap is by empirical way, but be-
cause LC is now at an early stage of development we are not
yet able to measure this impact. Because we focus only on
types, two contexts are equals only if they contain the same

types:

ctxl (number number number)
ctx2 = (number boolean number)
ctx3 (number number number)

In this example the 3 contexts represent a stack frame
containing 3 values. Here ctx] = ctx3, ctxl != ctx2 and ctx2

!= ctx3. So all procedure entry contexts could be represented
by a list of types corresponding to the types of the argu-
ments. We know that the maximum number of contexts for a
procedure with p parameters is exponential and would have
serious consequences on memory. Even though this is an ex-
treme case wherein all possible contexts are actually used, it
is a case we have to handle. There are several possibilities to
limit this maximum:

Function curryfication could completely avoid the closure
size problem at a price of performance.

Limit the number of contexts by simply stopping the gen-
eration of versions if a fixed number of contexts is
reached.

Keep only hot contexts in cc-table. We can only generate
versions of procedures for contexts frequently used.

Combination of previous points

6.2 Generated code size

The other important limitation is the size of the generated
code. This problem is similar to the size of closures because
again it’s not possible to theoretically predict how many ver-
sions will be generated and the final code size. An empiri-
cal study could give us more information on its impact. We
expect that lazy-compilation, which allows compiling only
executed code will balance the size problem caused by the
coexistence of multiple versions of the same code. More-
over, in most of current systems, memory is a less precious
resource than performance. A possible consequence of code
versioning could be that it is not a suitable technique for em-
bedded systems and others memory limited platforms.

6.3 Return type

To be more efficient and have as much information as pos-
sible, the spread of the context is really important. We gave
before the example of the call sites. If we have more infor-
mation on arguments types in current context, we can gener-
ate more specialized versions of the function as long as this
information is spread to the function stub. Another important
spread of the context is all the information about returned
value from function to the call continuation stub. LC cur-
rently loses this information by assuming that the returned
type is unknown even if the type is known in function con-
text. The reason is that we cannot patch the call site directly
by replacing the stub address by the generated version ad-
dress because another execution with the same context may
cause a different execution and maybe a different return con-
text.

(define (foo n)
(if (even? n)
42
#£))

(foo m)

This example illustrates the problem. Assuming m = 3 and
we know that m is a number, the call (foo m) will cause
the compiler to generate a version of foo with a number
as entry context. When the function returns, we know that
the returned value type is a boolean because (even? 3)
is false. It’s clear here that the same call with the same
context, for example with m = 4, will use the same entry
point of previously generated version of foo but results in
a different entry context for the continuation. This entry
context depends both on the call site and on the context of
the return point of the function. So the only possible way to
correctly spread the context from return point is to associate
a return destination with both caller and context. LC does
not currently use this kind of mechanism.

7. Future work

In its current state there is a lot of work to do on LC compiler
to reach a decent implementation of Scheme which uses
code versioning with extreme laziness. This section presents
the most important work to accomplish.

First, the information in context is really important. If
it has more information, the compiler can generate more
specialized versions and remove more dynamic tests. An
important way to reach this goal is to correctly spread the
new information over execution. We said that one of the
limitations of the current implementation of LC is that the
spread of returned value information is not yet handled. This
particular point is one of our future work.

Another important task is to perform some experiments to
validate or invalidate both techniques. The first step will be
to reach a more decent implementation, then we will execute
some standard Scheme benchmarks and then study these
results and compare them to other implementations.

8. Related work

Some works have been done on getting as much information
as possible on types such as tagging optimization. Henglein
[5] improved this optimization using type inference and ap-
ply it to Scheme language. Such optimizations require one
or more passes on the representation and require additional
calculations which goes against our goals and the extremely
lazy compilation. Moreover, these optimizations are mainly
used to increase the use of procedure inlining to generate an
unique optimized version of the code which works regard-
less of the entry context.

Adams et al. [8] developed a flow-sensitive analysis to
infer types based on the static analysis CFA. Although this
algorithm reduces the cost of traditional CFA and is flow-
sensitive, so it take cares of type predicates and others re-
lated operators, it performs analyses in O(nlogn) which is
significant for a JIT compiler and implies this technique to
be more suitable for AOT compilation. As explained in sec-

tion 4.4, our technique removes type tests and take care of
execution flow without additional cost.

A more close work than ours was done by Chambers
and Ungar for self language [4]. Their technique, code cus-
tomization, is used to generate multiple versions of the same
procedure specialized depending on the type of the mes-
sage’s receiver. Moreover, this technique takes only advan-
tage of type information while code versioning is extensible
to other uses (e.g. register allocation).

Gal et al. [6] suggest to accumulate type information
to specialize traces in order to remove some dynamic type
tests. This technique is called trace-based compilation. This
technique implies the use of a trace-based compiler and is
made to specialize code at loop level. On the other side code
versioning specialize each piece of code. While trace-based
optimization is close to our approach, it implies the use of
both a compiler and an interpreter and then rely on a more
complex architecture than code versionning which only uses
a compiler.

The work done on Mercury compiler [9] is also worth
mentioning. This compiler uses a similar design than ours by
using a lazy code generator for example to improve register
allocation, but this compiler only uses lazy design to delay
code generation for AOT compilation.

9. Conclusion

This paper has presented the technique of code versioning
which allows the compiler to generate multiple versions of
machine code based on compile-time known information.
LC is our implementation of a Scheme compiler which uses
code versioning coupled to an extremely lazy compilation
design which improves its effect. LC currently is at an early
stage of development and we are not yet able to measure
the actual benefits of this technique as well as its impact
on generated code size. There is a lot of remaining work
to reach a decent implementation of the Scheme language
which exploits code versioning / extreme laziness and cor-
rectly spreads context over execution.

The current tests show that LC compiler removes a lot of
dynamic type tests on generated code. This is why we are
expecting good results for this technique. The next step will
be to validate the results by experiments.

References

[1] Gerald Jay Sussman and Guy L Steele Jr. Scheme: A interpreter
for extended lambda calculus. Higher-Order and Symbolic
Computation, 11(4):405-439, 1998.

[2] Monica Lam, Ravi Sethi, JD Ullman, and Alfred Aho.
Compilers: Principles, techniques, and tools, 2006.

[3] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman,
and F Kenneth Zadeck. An efficient method of computing
static single assignment form. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 25-35. ACM, 1989.

[4] Craig Chambers and David Ungar. Customization: Optimizing
compiler technology for self, a dynamically-typed object-
oriented programming language. In ACM SIGPLAN Notices,
volume 24, pages 146-160. ACM, 1989.

[5] Fritz Henglein. Global tagging optimization by type inference.
ACM SIGPLAN Lisp Pointers, (1):205-215, 1992.

[6] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson,
David Mandelin, Mohammad R Haghighat, Blake Kaplan,
Graydon Hoare, Boris Zbarsky, Jason Orendorff, et al. Trace-
based just-in-time type specialization for dynamic languages. In
ACM Sigplan Notices, volume 44, pages 465—478. ACM, 2009.

[7] R Kent Dybvig. Three implementation models for scheme. PhD
thesis, University of North Carolina at Chapel Hill, 1987.

[8] Michael D Adams, Andrew W Keep, Jan Midtgaard, Matthew
Might, Arun Chauhan, and R Kent Dybvig. Flow-sensitive
type recovery in linear-log time. In ACM SIGPLAN Notices,
volume 46, pages 483—498. ACM, 2011.

[9] Thomas C Conway, Fergus Henderson, and Zoltan Somogyi.
Code generation for mercury. In ILPS, pages 242-256, 1995.
[10] Google v8 javascript engine.
http://code.google.com/p/v8/.
[11] Chicken Scheme.
http://call-cc.org/.
[12] M Feeley. Gambit Scheme.
http://gambitscheme.org.

[13] Extempore language and environment.
http://benswift.me/extempore-docs/index.html.

