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ABSTRACT

We are interested in predicting the wait time of customers upon their arrival in some service system such
as a call center or emergency service. We propose two new predictors that are very simple to implement
and can be used in multiskill settings. They are based on the wait times of previous customers of the same
class. The first one estimates the delay of a new customer by extrapolating the wait history (so far) of
customers currently in queue, plus the last one that started service, and taking a weighted average. The
second one takes a weighted average of the delays of the past customers of the same class that have found
the same queue length when they arrived. In our simulation experiments, these new predictors are very
competitive with the optimal ones for a simple queue, and for multiskill centers they perform better than
other predictors of comparable simplicity.

1 INTRODUCTION

Delay estimation and its announcement to customers that join a queue in a service system can be used to
improve their experience and the overall efficiency of the system. For example, in Canada and the USA,
some emergency rooms display the average wait time of recent patients over the internet or on an electronic
dashboard. This information may help reduce peak congestion by encouraging incoming patients to visit
a less busy emergency facility. In telephone call centers, the waiting queue is generally invisible to the
caller, unlike physical queues in department stores and supermarkets. Forecast delay announcements can
then provide very useful information to callers. Upon hearing the estimated delay, a customer may choose
to hang up, or stay in the queue, or opt to be called back later (Armony, Shimkin, and Whitt 2009). In
this paper, we focus solely on delay prediction, without considering the impact of its announcement on
customer behavior.

Most previous work on delay prediction has been made for systems with a single first-come, first-served
(FCFS) waiting queue with a single class of customers, for which simple analytical formulas can be derived
for various performance measures. Ibrahim and Whitt (2009a) distinguish two categories of predictors:
those that depend mainly on the length of the queue and system parameters, named queue-length (QL)
predictors, and those that rely primarily on past delay information, named delay-history (DH) predictors.
One very simple and popular DH predictor is the last-to-enter-service (LES) predictor, which just returns
the wait time experienced by the last customer to have started service. The main difference between QL
and DH predictors is that QL predictors are generally derived from queueing theory, whereas DH predictors
are usually parameter-free heuristics based on historical observations.

QL predictors are known to be optimal for a simple system such as a single M/M/s queue in steady-state,
but they do not apply to multiskill systems and would be hard to extend to systems with mutiple queues.
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Very few predictors have been proposed for queueing systems with multiple types of customers and multiple
queues that can share some servers, as in multiskill call centers, in which each server is an agent that can
handle a subset of the call types, and each call type has its own queue. These types of predictors generally
apply machine learning algorithms over the observed data. More precisely, they use optimisation methods
to learn the parameters of the predictors. Senderovich et al. (2015) proposed predictors for a multiskill
call center with multiple call types but a single type (or group) of agents that can handle all call types.
Thiongane, Chan, and L’Ecuyer (2015) studied two classes of delay predictors that can be used for more
general multiskill call centers or service systems. One uses regression splines (RS) and the other uses an
artificial neural network (ANN). These predictors use the delay information of the LES customer and the
size of the queues. Ang et al. (2016) study the Lasso method (Tibshirani 1999) for the wait time prediction
in emergency departments based on certain state variables of the system (such as the queue length) and
functions of them. These predictors perform well empirically in simulations, but one drawback is that they
have a large number of parameters that must be “learned” beforehand. This training phase of the model
requires a large amount of data and computational time. They are also more complex to implement in
practice.

In this paper, we focus on simple DH-type predictors that are easy to implement and have very few
parameters. We propose two new predictors. The first one extends the LES predictor by also considering
the wait time experienced thus far by the customers of the same type that are still in the queue. The final
wait times of those customers are still unknown, but the predictor extrapolates the wait times realized so
far. We call this predictor the extrapolated LES (E-LES). The second predictor estimates the wait time
of the new customer by a moving average of the realized wait times of the customers of the same type
who found the same queue length when they arrived. We call it the average conditional LES (AvgC-LES).
These new predictors are attractive largely because of their simplicity. They have very few parameters,
do not need an optimisation phase, and are easy to implement in practice. The second one has a single
parameter: the window size for the moving average. The first one has none in its basic form, whereas
some of its variants have one parameter, which serves to exclude some of the customers at the back of the
queue, whose realized wait time so far does not provide sufficient information. We study these predictors
in the context of call centers, but they can also be used for other service systems.

We performed simulation experiments to compare the accuracy of different predictors on different call
center models. In those experiments, we found that AvgC-LES was usually more accurate than E-LES,
which was in turn more accurate than LES. For a single queue, for which QL is known to be optimal,
AvgC-LES came very close to QL. For the multiskill call center examples, AvgC-LES was slightly less
accurate than RS and ANN. However, it is much simpler.

The remainder of the paper is structured as follows. Section 2 presents a literature review of delay
predictors for service systems, with a particular focus on call centers. Section 3 introduces our new delay
predictors and describes other predictors considered in our numerical comparisons, reported in Section 4.
A conclusion is given in Section 5.

2 LITERATURE REVIEW

As mentioned in the introduction, most work on delay prediction has been done for single-queue systems,
in which customers are answered in FCFS order, so that future arrivals do not affect the wait time of present
customers. Theoretical results on delay predictors are limited almost exclusively to these simple systems.
In multi-queue systems, customers may have different priorities and FCFS may not hold in general.

Consider a new customer who enters a queue with C customers already waiting in that queue, and
let W be the random variable that represents her wait time. A natural predictor of W is its expectation
conditional on C. This is the QL predictor. For a GI/M/s queue with general inter-arrival time distribution,
exponential service times with rate µ , s servers, and no abandonment (infinite customer patience), this
conditional expectation is (Whitt 1999):
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E[W |C] =
C+1

sµ
.

In a GI/M/s+M queue, each customer has an exponential patience time with mean ν−1, after which she
abandons if still waiting in queue. The expected virtual delay conditional on C is then

E[W |C] =
C

∑
c=0

1
sµ + cν

. (1)

The virtual delay is the wait time that a customer must wait before she is answered. If the customer
abandons, then her virtual delay is the wait time she would have needed to wait before receiving service.
If we select only the customers who did not abandon, their average waiting is slightly less. Jouini, Dallery,
and Aksin (2011) give the conditional expected wait time of a served customer who finds C customers
already in queue upon arrival:

E[W |C and served] =
C+1

∑
c=1

1
sµ + cν

. (2)

Equation (2) is preferable to (1) if we are only interested in the prediction errors of served customers,
which is the case in this study.

QL formulas are much harder to develop for multi-queue systems, because servers may be restricted to
serve a subset of customer types, and they could attribute different priorities to different customer types. For
the special case where every server can serve all customer types with the same priority order, Senderovich
et al. (2015) propose QL formulas that give upper and lower bounds on the expected delay time.

Ibrahim and Whitt (2009a) and Ibrahim and Whitt (2011) study several DH predictors in a single-queue
environment. When a new customer enters the queue, these predictors return the delay experienced by
the last-to-enter-service (LES) customer, head-of-line (HOL) customer, last-to-complete-service (LCS)
customer, or most recent arrival to complete service (RCS). LES and HOL predictors are generally better
than LCS and RCS. The latter predictors are based on the delay times of customers who have already
completed service, so they use older information than LES and HOL. Ibrahim and Whitt (2009b), Armony,
Shimkin, and Whitt (2009) and Ibrahim, Armony, and Bassamboo (2016) study extensively the LES predictor
for a single queue, and they show that LES is asymptotically accurate (and optimal) as the numbers of
servers and customers grow to infinity. Ibrahim, Armony, and Bassamboo (2016) also propose different
adjustments to the LES predictor. For example, the delay estimation could be adjusted proportionally based
on the current queue length and the queue length observed by the LES customer when it arrived.

A simple generalization of LES, often used in practice (Dong, Yom Tov, and Yom Tov 2016), takes the
average wait time of the last N customers who entered service, or of the customers who entered service in
the last T units of time. Ibrahim, Armony, and Bassamboo (2016) have observed that this type of averaging
usually does not improve the accuracy (and may degrade it) compared with the original LES, because the
average version uses older information. We also observed this in our numerical experiments.

Another class of predictors proposed recently use machine learning algorithms (e.g., artificial neural
networks, regressions, or decision trees) to train the delay predictors; see for example Senderovich et al.
(2014), Senderovich et al. (2015), Thiongane et al. (2015), and Ang et al. (2016). These algorithms are
generally more accurate than DH predictors, but they are also more complex to implement in practice, and
they require a large amount of data and training time. For these reasons, there is still interest for simpler
methods.

3 DELAY PREDICTORS

In this section, we define the specific delay predictors considered in this paper. Since we are interested
in predictors that are likely to be implemented in practice, we consider primarily DH predictors having
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few parameters to optimize. For comparison, in our simulation studies we also include QL predictors
for single-queue systems, and machine learning algorithms for multiple queues and multiskill instances.
Note that even though they may perform better (when they are applicable), these predictors have other
limitations, as we said earlier. The DH estimators always use only the delays of customers of the same
class (same queue) as the one for which we are making the prediction. Thus, for each method considered,
there is a different predictor for each customer class j, even if we do not always index it by j explicitly.

3.1 Last-to-Enter-Service (LES)

This simple predictor returns the wait time experienced by the last-to-enter-service customer of the same
class who had to wait (Ibrahim and Whitt 2009a). If the LES customer did not wait in queue (its delay time
was zero), this predictor will return the wait time of the most recent customer who had a positive delay.

3.2 Average LES (Avg-LES)

This averaging version of the LES predictor is often used in practice (Dong, Yom Tov, and Yom Tov 2016).
For class j, it returns the average delay experienced by the N j most recent customers who entered service
after waiting a positive time, for a fixed integer N j > 0, or by the (variable number of) customers who
entered service in the last Tj units of time. A larger N j or longer time window Tj increases the smoothness
and may thus reduce the variance of the predictor, but this larger lag most often results in less accurate
predictions because it uses older (less relevant) information. In particular, the predictions are more likely
to be based on the waits of customers who saw a very different queue ahead of them when they arrived.
The N j or the Tj can be taken as all equal, but it could also make sense to take larger N j or smaller Tj for
more frequent classes of customers. In our experiments, we found that the best choice of N j was usually
N j = 1.

3.3 Weighted Average LES (WAvg-LES)

Avg-LES can be generalized to a weighted average of the past wait times. For each queue (customer class)
j, we select a sequence of non-negative weights φ j,1,φ j,2, . . . , usually non-increasing and converging to 0,
and such that ∑

∞
i=1 φ j,i = 1. Then we predict the wait time of an arriving customer by

D j =
∞

∑
i=1

φ j,iWj,i,

where Wj,i is the wait time of the ith-last customer of class j that started service (the LES for i = 1, the
previous one for i = 2, etc.).

By taking φ j,i = 1/N j for i = 1, . . . ,N j and φ j,i = 0 for i > N j, we recover Avg-LES. If we take
φ j,i = α j(1−α j)

i−1 instead, for some smoothing factor α j ∈ (0,1], we obtain an exponential smoothing
average (ESAvg-LES) instead of an ordinary average. For α j = 1, we recover LES. For α j < 1, the
implementation must be approximate, because in practice we only have a finite number of past delays. In
our implementation, for each class j, we initialize a predictor S j to −1, and we update S j as follows. Each
time a new customer of this class starts service after a wait time W , we set S j to W if S j =−1, otherwise
we update it to

S j := α jW +(1−α j)S j.

When a customer of class j enters the queue, its wait time is predicted by the current S j. If S j = −1,
we return the value of the LES predictor. This predictor has many parameters (the weights) in its general
form, but this large number of parameters can be easily reduced by putting constraints on the weights.
According to our experiments, the best choice of α j is usually close or equal to 1.
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3.4 Proportional Queue LES (P-LES)

Let QLES denote the number of customers in queue when the LES customer arrived, Q the number of
customers in queue ahead of the new arrival, and x the LES delay. To account for the change in queue
length, Ibrahim, Armony, and Bassamboo (2016) consider (as a heuristic) a predictor that multiplies x by
the ratio Q/QLES. Here, we modify this predictor by adding the end of service to free a server, as in the
QL formulas. This gives

D = x
Q+1

QLES +1
.

This modification also resolves the case in which the LES customer entered an empty queue (QLES = 0).

3.5 Extrapolated LES (E-LES)

Here we propose a DH predictor that relies on delay information from the customers who are currently
waiting in queue. The final delay times of these customers are still unknown, but we extrapolate the
elapsed (partial) delays to predict them. This is the main distinction between E-LES and the previous DH
predictors (LES, Avg-LES, WAvg-LES and P-LES), which rely only on past complete delay times. E-LES
uses partial but fresher information. It works as follows.

Suppose a new customer enters a queue with C customers ahead, numbered from 1 to C, with customer
1 at the head of the queue. The LES customer, who was just in front of customer 1, has the number 0.
For any customer c ∈ {1, . . . ,C}, let Q(c) be the number of customers already in queue when customer
c arrived, A(c) be the number of customers currently ahead of c, and W (c) be the wait time experienced
by customer c up to now. Thus, customer c found Q(c) customers in the queue upon arrival, and has
advanced by Q(c)−A(c) positions in the queue during the elapsed time W (c) since its arrival. Since
Q(c)+ 1 customers must exit the system (after being served or have abandoned) before customer c can
begin service, it seems natural to predict the wait time E(c) of customer c by the linear extrapolation

E(c) =W (c)
Q(c)+1

Q(c)−A(c)
. (3)

For c = 0, we set E(0) equal to the real wait time of the LES customer, because her true delay is already
known.

The predicted delay D of the new customer is the average of the extrapolated delays of the C customers
in queue and the true delay of the LES customer:

D =
1

C+1

C

∑
c=0

E(c). (4)

Formula (4) based on (3) provides a natural weighted average that puts more weights on more recent
delays, so one might hope that it captures the changes in system dynamics earlier than other DH predictors.
Note that because the C customers share the same queue, their wait times are generally correlated, so the
E(c) are not independent. One weakness of predictor (4) is that customers near the end of the queue have
experienced only short wait times so far and typically have a small value of Q(c)−A(c), hence they are
likely to provide less delay information and their extrapolated delays E(c) are usually noisy. To reduce
this noise, we can add multiplicative weights that decrease with c, as in WAvg-LES. Those weights may
depend on C, c, Q(c) and A(c).

We have implemented one version of this that selects a threshold parameter τ and includes in (4) only
the customers who advanced by at least τ positions in the queue since their arrival. That is, we define
C = {c≤C : Q(c)−A(c)≥ τ}∪{0} and

D =
1
|C | ∑c∈C

E(c), (5)
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where |C | is the size of set C . The weights are 1/|C | for c∈C and 0 otherwise. In our implementation, we
select a fixed constant δ > 0 and we set dynamically the threshold τ as a proportion δ of the current queue
length C, that is τ = dδCe. A larger δ will return predictions closer to those of LES. In particular, if we set
δ = ∞, then C = {0} and we obtain LES. In our simulation experiments, the best δ we found empirically
(from a few selections) never exceeded 0.4. We report and use this best value for each example.

Another heuristic to select the weights is to always include a fixed proportion β ∈ [0,1] of customers
from the head of the queue. We replace C by C′ = dβCe in (4), which gives the predictor

D =
1

C′+1

C′

∑
c=0

E(c). (6)

Choosing β = 0 excludes all customers in queue and then E-LES becomes the same as LES. We shall use
(5) and not (6) for our simulation experiments.

3.6 Average LES Conditional on Queue Length (AvgC-LES)

This method is inspired by the QL predictor for a single queue with exponential service times, which predicts
the delay as the expected wait time conditional on the queue length when the customer arrives. Instead of
using a mathematical formula based on exponential service times as in QL, this proposed predictor uses
the wait times of past customers of the same type who found the same queue length when they arrived.

More precisely, for each queue j, we select a maximal queue size K j to be considered and, for each
queue size k ∈ {1, . . . ,K j}, we select an integer N j,k > 0 as in Avg-LES. We memorize the wait times of
the last N j,k customers of class j who found a queue of size k at their arrival. For a new arrival of type j
that finds a queue j of size k, the wait time is predicted by the average of those N j,k previous wait times.
If k is unbounded or if certain values of k are rare, then we can regroup the values in a smaller number of
subsets and maintain an average for each subset. If fewer than N j,k waits have been recorded so far, we
take the average of those recorded. If none has been recorded, we take the LES.

For this predictor, contrary to Avg-LES, a larger N j,k usually performs significantly better than N j,k = 1.
The key difference with Avg-LES is that here the average is only over customers that see the same queue
length when they arrive. We observed that for long simulations with a single queue, the accuracy of this
predictor is very close to that of QL. This can be explained by the fact that AvgC-LES has collected
enough data to compute good expected conditional wait times just like QL. In a many-server heavy-traffic
efficiency-driven regime (Whitt 2004), AvgC-LES with N j,k = 1 becomes the LES predictor conditional
on the queue length, whose predictions are close to those of QL.

One could also consider weighted-average versions of AvgC-LES, which replace the ordinary average
of the N j,k previous wait times for class j and queue size k by a weighted average as in WAvg-LES. In
particular, one can use exponentially decreasing weights with small smoothing factors (e.g., 0.1 or less), so
that each new observation makes a relatively small contribution to the average. One advantage of exponential
smoothing in the long run is that there is no need to store all the individual wait time observations. In
our experiments, exponential smoothing performed similarly but never better than the ordinary average in
terms of prediction error, so we do not report detailed results for it.

4 SIMULATION RESULTS

In this section, we report the results of simulation experiments that compare the accuracy of new and
existing predictors on three queueing models. We start with the classic M/M/s+M model, for which an
analytic formula is available for the expected delay given the current state of the system. The aim is to
verify that our predictions are not too far from these exact expectations in this simple case. The second
example is an N-model, with two classes of customers and two groups of servers, in which the first group
serves only customers from the first class and the second group serves both classes. The third one is a
model of a multiskill center based on real data from the call center of a utility provider in Quebec, Canada.
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The model has six classes of customers (call types), eight agent groups, and is non-stationary. Our models
are simulated using the call center simulator ContactCenters (Buist and L’Ecuyer 2005, Buist 2009) in
which we have implemented the delay predictors.

For the predictors that require parameters, we explored a few choices and selected those that gave the
best results. The best N j for Avg-LES are usually small (less than 10 and often equal to 1) and the best
N j,k for AvgC-LES are usually large (100 or more). In agreement with this, we found in our experiments
that for exponential smoothing, the best smoothing factor α j is usually larger than 0.9 for ESAvg-LES and
smaller than 0.1 for the exponentially weighted version of AvgC-LES. Since the results were also very
similar to those for ordinary averaging, we will not report them in the tables.

4.1 Measuring Prediction Errors

The accuracy of a predictor can be measured by its mean squared error (MSE). For a given class of
customers, let D be the predicted delay time of a “random” customer upon arrival, and let W be the realized
waiting time. We consider only the customers who experience positive wait times (W > 0) and who wait
until they receive service (those who abandon are not considered). The MSE is defined as

MSE = E
[
(W −D)2] .

Since we cannot compute the MSE exactly, we estimate it by its empirical (and consistent) counterpart,
the average squared error (ASE). Let N be the number of served customers who had to wait in queue.
We denote their predicted and realized delays by D1, . . . ,DN , and W1, . . . ,WN , respectively. The ASE is
defined as

ASE =
1
N

N

∑
n=1

(Wn−Dn)
2.

In our numerical experiments, we report a normalized version of the ASE, called the root relative average
squared error (RRASE), which is the square root of the ASE divided by the average wait time of the N
customers:

RRASE =

√
ASE

∑
N
n=1Wn/N

×100.

4.2 A Single Queue of Type M/M/s+M

We consider an M/M/s+M single-queue model with time varying arrival rate. The day is divided into 20
periods of one hour. The arrival process is Poisson with constant rate λp in period p, for p = 1, . . . ,20.
We take λp = 25 for odd p and λp = 20 for even p. The service times are exponential with mean 1 and
the patience times are exponential with mean 2. There are s = 20 servers for the entire day. We simulate
the model for 100 independent days to estimate the accuracy of the predictors. We find that the average
queue length over the day is 7.7 customers, the delay probability is 91.9%, the abandonment probability
is 15.8%, and the average waiting time is 0.33 hour.

For this model, the QL predictor (2) gives the exact conditional expectation and minimizes the MSE,
so it is optimal for our criterion, under the assumption of exponential service and patience times with
known and constant rates (i.e., if µ , ν and s = 20 are known and do not vary with time). We compare the
performance of other predictors with QL to see how close they are from optimal.

Table 1 reports the RRASEs for various predictors. We used N j = 2 for Avg-LES, N j,k = 100 for
AvgC-LES, and δ = 0.1 for E-LES. QL wins, which is no surprise, followed very closely by AvgC-LES.
The other methods give significantly larger RRASE, and the best of them is our newly proposed E-LES.
Avg-LES with N j ≥ 2, often used in practice, does worse than LES, which corresponds to N j = 1. Ibrahim,
Armony, and Bassamboo (2016) found similar behavior. P-LES turns out to be the worst predictor.
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Table 1: RRASEs for the M/M/20+M example.

LES Avg-LES P-LES E-LES AvgC-LES QL
RRASE 46.9 49.4 59.2 43.6 32.9 32.1

Figure 1 displays the real delays and those predicted by QL, LES, AvgC-LES, and P-LES, as functions
of the arrival times, for the 13th to 16th hour of one simulation run of a day. It gives an idea of how the
prediction errors behave. Of course, this behavior differs across different days.
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Figure 1: Comparing real delays vs. predictions by LES, P-LES, AvgC-LES, and QL.

4.3 An N-Model Call Center

We take a slightly more complex system with two call types and two agent groups, as in Thiongane, Chan,
and L’Ecuyer (2015). A customer represents a phone call, and each server is an agent that can handle calls.
Agents within the same group are homogeneous. Group 1 can serve only calls of type 1, and group 2 can
serve all calls. This is illustrated in Figure 2, which also shows why this is called an N-model. We assume
the following priority routing policy. There is an FCFS wait queue for each call type. Agents of group 2
always give priority to calls of type 2, even if a call of type 1 has waited longer. When a new call of type
1 arrives, the system will first try to assign this call to an idle agent of group 1. If none is available, it will
try to match the call with an idle agent of group 2. If all agents are busy, this call joins the wait queue.

The day is divided into 10 periods of one hour. In each period, the arrival process is Poisson with
a constant arrival rate. The service times and patience times are exponential with constant rates. In our
numerical example, for call type 1, the vector of the arrival rates is λ1 = (25,34,43,48,51,57,42,34,22,18)
per hour, the mean service time is µ

−1
1 = 21 minutes, and the mean patience is ν

−1
1 = 46.7 minutes. For call

type 2, these parameters are respectively λ2 = (26,40,47,59,68,59,48,43,39,29), µ
−1
2 = 11, and ν

−1
2 = 30.

The staffing vectors (number of agents of each group in each period) are s1 = (4,6,9,10,9,9,9,8,5,5) for
group 1 and s2 = (4,7,9,10,9,8,7,8,6,5) for group 2. We simulate 100 independent days (replications).
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Type 1 Type 2

G1 G2

Figure 2: Diagram of an N-model system with 2 call types and 2 agent groups.

We find that 88% of served calls of type 1 were handled by group 1 (and the others by group 2). Table 2
shows some performance measures for the two call types, aggregated over the day.

Table 2: Average performance measures of the N-model example.

Performance measures Type 1 Type 2
Delay probability (%) 94.0 97
Abandonment ratio (%) 33 23
Average queue length 9.7 5.5
Average waiting time (AWT) (Sec.) 938 426
Conditional AWT (Sec.) 1151 465

Table 3 reports the RRASEs for the two call types, for various predictors. We took N j = 7 for Avg-LES,
N j,k = 100 for AvgC-LES, and δ = 0.2 for E-LES. Note that QL does not apply in this case. In addition to
the DH predictors, we also tried the RS and ANN predictors from Thiongane, Chan, and L’Ecuyer (2015),
mentioned in the introduction. The RS and ANN predictors perform better, but they require a learning phase
that is very costly and have many parameters. We use them as benchmarks for comparison. Among the
DH predictors, AvgC-LES gives the best performance and comes close to RS and ANN. P-LES performs
very poorly. LES, Avg-LES, and E-LES have comparable performance.

Table 3: RRASE for each type call, for the N-model example.

Type LES Avg-LES P-LES E-LES AvgC-LES RS ANN
1 49.9 52.1 70.2 46.7 37.3 36.4 35.1
2 62.9 67.1 94.6 61.0 47.3 44.3 42.3

4.4 A Larger Call Center Based on Real Data

We consider a larger example inspired by the data from a subset of calls and agents in a real call center of
a utility provider in Quebec, Canada. The center operates from 8 a.m. to 6 p.m. in a day. These opening
hours are divided into 40 time periods of 15 minutes. The entire call center handles 96 call types with 375
agent groups, but we have selected the 6 call types having the largest volumes and 8 agent groups that can
serve them, as in Chan, Koole, and L’Ecuyer (2014).

The skill sets of these 8 agent groups are S1 = {1,3,4,5}, S2 = {1,2}, S3 = {3,5}, S4 = {3,5,6},
S5 = {1,3,5}, S6 = {1,2,3,5}, S7 = {3,5,6}, and S8 = {1,3,5,6}. The arrivals are Poisson with constant
rate λ j,p in period p for each type j. The average arrival rates per period, aggregated over the day, for the
six call types are: 35.5,6.0,98,6.5,29, and 3.5. Patience times are exponential with means (for the six call
types): (52,36,41,51,41,15). The service times are lognormal, with different parameters for each pair of
agent group g and call type j that can be served by this group. The estimated means vary from 5.14 to
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11.3 minutes, and the standard deviations range from 5.88 to 22.0 minutes. The parameters were slightly
altered from those of the real center for confidentiality reason. This example has the particularity that the
arrival rates and the staffing change significantly during the day.

We simulated 100 independent days, as for the previous examples. Table 4 shows the aggregated
performance measures for the six call types. Note that the average queue length varies significantly across
the call types (from about 3 to 120). Call type 6, whose queue length and average wait time are smaller,
actually has high priority for all groups that can serve it. Call type 3 has a lower priority and the highest
volume.

Table 4: Average performance measures of the larger example.

Performance measures Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
Delay probability (%) 98.1 99.5 98.6 97.9 97.8 99.2
Abandonment ratio (%) 34.2 37 43 34.4 39.2 13.6
Average queue length 41.3 6.65 120 6.95 38.2 2.96
Average waiting time (Sec.) 1037 1078 1610 1053 1125 208

Table 5 shows the RRASEs for the six call types. We used N j = 10 for Avg-LES, N j,k = 200 for
AvgC-LES, and δ = 0.4 for E-LES. As expected, the more expensive RS gives the best predictions for
all call types, AvgC-LES is the best performer (by far) among the DH methods, and P-LES is the worst
performer. The difference of accuracy between RS and AvgC-LES is larger here than for the previous
example, except for call type 6. The explanation is that this call type has high priority for all groups that
can serve it and its arrival rate does not vary much with time. For the other call types, we have larger
variation in arrival rates and in staffing, and this affects the accuracy of DH predictors. Ibrahim and Whitt
(2009a) have also observed that DH predictors lose their accuracy when the staffing and the arrival rate
vary significantly. However, we find here that AvgC-LES loses its accuracy less rapidly compared to the
other DH predictors.

Table 5: RRASEs for the 6 call types of the larger example.

Type LES Avg-LES P-LES E-LES AvgC-LES RS
1 24.6 25.4 45.1 23.2 13.0 8.9
2 35.6 34.8 95.6 34.2 22.7 12.9
3 20.3 21.6 28.4 20.4 16.9 11.4
4 41.3 55.7 67.1 39.1 22.4 15.9
5 26.9 28.7 31.0 25.2 22.9 18.9
6 94.5 96.1 130 93.2 65.8 62.7

5 CONCLUSION

We extend the family of delay-history predictors for service systems by introducing two new delay predictors,
based on simple heuristics. The first idea is to exploit the more recent but incomplete delay information of
customers still waiting in queue (E-LES). Their final wait times are estimated by using a simple extrapolation
of their progression in the queue. The other idea proposes an empirical version of the QL formula in the
context of multiskill systems, using historical data. For each queue size, a conditional expected wait time is
estimated from the past delays of customers who found the same queue length in front of them when they
arrived (AvgC-LES). In a single queue system, our new predictors are better than other simple predictors
that we know and in addition, we observe that AvgC-LES is very close to the optimal QL predictor. For
realistic multiskill systems, which typically have time-varying arrival rates and staffing, our predictors also
perform better than other DH predictors. Although they do not beat methods from machine learning, their
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advantages are that they are simpler to implement, have few parameters, and require no training. They
represent interesting simple alternatives to more complex predictors.
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search interests are in estimating wait times and modeling service times in call centers. He is currently
working on the development of wait time predictors in multi-skill call centers. His email address is
thiongam@iro.umontreal.ca.

WYEAN CHAN is a postdoctoral fellow at the Université de Montréal, Canada. He holds a PhD degree in
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